539 research outputs found

    Evaluation of rK39 rapid diagnostic tests for canine visceral leishmaniasis : longitudinal study and meta-analysis

    Get PDF
    Canine visceral leishmaniasis is a vector-borne disease caused by the intracellular parasite Leishmania infantum. It is an important veterinary disease, and dogs are also the main animal reservoir for human infection. The disease is widespread in the Mediterranean area, and parts of Asia and South and Central America, and is potentially fatal in both dogs and humans unless treated. Diagnosis of canine infections requires serological or molecular tests. Detection of infection in dogs is important prior to treatment, and in epidemiological studies and control programmes, and a sensitive and specific rapid diagnostic test would be very useful. Rapid diagnostic tests (RDTs) have been developed, but their diagnostic performance has been reported to be variable. We evaluated the sensitivity of a RDT based on serological detection of the rK39 antigen in a cohort of naturally infected Brazilian dogs. The sensitivity of the test to detect infection was relatively low, but increased with time since infection and the severity of infection. We then carried out a meta-analysis of published studies of rK39 RDTs, evaluating the sensitivity to detect disease and infection. The results suggest that rK39 RDTs may be useful in a veterinary clinical setting, but the sensitivity to detect infection is too low for operational control programmes

    Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging.

    Get PDF
    The magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (TFH) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. Here we show that TFH cell localization is critical for the quality of the antibody response and for the expansion of the FDC network upon immunization. The smaller GC and compressed FDC network in aged mice were corrected by provision of TFH cells that colocalize with FDCs using CXCR5. This demonstrates that the age-dependent defects in the GC response are reversible and shows that TFH cells support stromal cell responses to vaccines

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “rDNA–Sensitive” Genes and Natural Variation

    Get PDF
    The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation

    A canine leishmaniasis pilot survey in an emerging focus of visceral leishmaniasis: Posadas (Misiones, Argentina)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of reports are calling our attention to the worldwide spread of leishmaniasis. The urbanization of zoonotic visceral leishmaniasis (VL) has been observed in different South American countries, due to changes in demographic and ecological factors. In May 2006, VL was detected for the first time in the city of Posadas (Misiones, Argentina). This event encouraged us to conduct a clinical and parasitological pilot survey on domestic dogs from Posadas to identify their potential role as reservoirs for the disease.</p> <p>Methods</p> <p>One hundred and ten dogs from the city of Posadas were included in the study. They were selected based on convenience and availability. All dogs underwent clinical examination. Symptomatology related to canine leishmaniasis was recorded, and peripheral blood and lymph node aspirates were collected. Anti-<it>Leishmania </it>antibodies were detected using rK39-immunocromatographic tests and IFAT. Parasite detection was based on peripheral blood and lymph node aspirate PCR targeting the <it>SSUrRNA </it>gene. Molecular typing was addressed by DNA sequence analysis of the PCR products obtained by <it>SSUrRNA </it>and ITS-1 PCR.</p> <p>Results</p> <p>According to clinical examination, 69.1% (76/110) of the dogs presented symptoms compatible with canine leishmaniasis. Serological analyses were positive for 43.6% (48/110) of the dogs and parasite DNA was detected in 47.3% (52/110). A total of 63 dogs (57.3%) were positive by serology and/or PCR. Molecular typing identified <it>Leishmania infantum </it>(syn. <it>Leishmania chagasi</it>) as the causative agent.</p> <p>Conclusions</p> <p>This work confirms recent findings which revealed the presence of <it>Lutzomyia longipalpis</it>, the vector of <it>L. infantum </it>in this area of South America. This new VL focus could be well established, and further work is needed to ascertain its magnitude and to prevent further human VL cases.</p
    corecore