21 research outputs found

    Unusually thick dinosaur eggshell fragments from the Spanish Late Cretaceous

    Full text link
    [EN] Fieldwork carried out recently in the southeastern branch of the Iberian Range (Valencia Province, Spain) has led to the collection of a large volume of dinosaur eggshell fragments of unusual thickness. These specimens, up to 4.9 mm thick, were recovered from palustrine grey marls of the upper Campanian-lower Maastrichtian Sierra Perenchiza Formation, which comprises a wetland paleoenvironment deposit. These eggshell fragments have a characteristic compactituberculate ornamentation, dinosauroid-spherulitic organisation, and exhibit a complex canaliculate respiratory system. The external tuberculate surface of the shell as well as the internal microstructure enable referral to Megaloolithus aff. siruguei, the most common megaloolithid oospecies known from the Iberian Peninsula and southern France. The biostratigraphic range of M. siruguei matches the temporal distribution of titanosaurid dinosaurs across the Iberian Range, tentatively considered to be potential producers.This work was supported by the Ministerio de Economia y Competitividad of Spain [Secretaria de Estado de Investigacion, Desarrollo e Innovacion, projects CGL2013-47521-P and CGL2014-53548-P]Company Rodríguez, J. (2017). Unusually thick dinosaur eggshell fragments from the Spanish Late Cretaceous. Historical Biology (Online). 31(2):203-210. https://doi.org/10.1080/08912963.2017.1357717S203210312Allain, R., & Suberbiola, X. P. (2003). Dinosaurs of France. Comptes Rendus Palevol, 2(1), 27-44. doi:10.1016/s1631-0683(03)00002-2Bravo, A. M., & Gaete, R. (2014). Titanosaur eggshells from the Tremp Formation (Upper Cretaceous, Southern Pyrenees, Spain). Historical Biology, 27(8), 1079-1089. doi:10.1080/08912963.2014.934231Canudo, J. I., Oms, O., Vila, B., Galobart, À., Fondevilla, V., Puértolas-Pascual, E., … Blanco, A. (2016). The upper Maastrichtian dinosaur fossil record from the southern Pyrenees and its contribution to the topic of the Cretaceous–Palaeogene mass extinction event. Cretaceous Research, 57, 540-551. doi:10.1016/j.cretres.2015.06.013Cruzado-Caballero, P., Ruiz-Omeñaca, J. I., Gaete, R., Riera, V., Oms, O., & Canudo, J. I. (2013). A new hadrosaurid dentary from the latest Maastrichtian of the Pyrenees (north Spain) and the high diversity of the duck-billed dinosaurs of the Ibero-Armorican Realm at the very end of the Cretaceous. Historical Biology, 26(5), 619-630. doi:10.1080/08912963.2013.822867Chiappe, L. M., Coria, R. A., Dingus, L., Jackson, F., Chinsamy, A., & Fox, M. (1998). Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature, 396(6708), 258-261. doi:10.1038/24370Company J. 2004. Vertebrados continentales del Cretácico superior (Campaniense-Maastrichtiense) de Valencia [PhD dissertation]. Valencia: Universidad de Valencia.Company, J., & Szentesi, Z. (2012). Amphibians from the Late Cretaceous Sierra Perenchiza Formation of the Chera Basin, Valencia Province, Spain. Cretaceous Research, 37, 240-245. doi:10.1016/j.cretres.2012.04.003Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X., & Brusatte, S. L. (2015). Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys, 469, 1-161. doi:10.3897/zookeys.469.8439Erben, H. K., Hoefs, J., & Wedepohl, K. H. (1979). Paleobiological and isotopic studies of eggshells from a declining dinosaur species. Paleobiology, 5(4), 380-414. doi:10.1017/s0094837300016900García, R. A. (2007). An «egg-tooth»–like structure in titanosaurian sauropod embryos. Journal of Vertebrate Paleontology, 27(1), 247-252. doi:10.1671/0272-4634(2007)27[247:aesits]2.0.co;2Garcia, G., & Vianey-Liaud, M. (2001). Dinosaur eggshells as biochronological markers in Upper Cretaceous continental deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1-2), 153-164. doi:10.1016/s0031-0182(01)00215-2Grellet-Tinner, G., Chiappe, L. M., & Coria, R. (2004). Eggs of titanosaurid sauropods from the Upper Cretaceous of Auca Mahuevo (Argentina). Canadian Journal of Earth Sciences, 41(8), 949-960. doi:10.1139/e04-049Grigorescu, D., Garcia, G., Csiki, Z., Codrea, V., & Bojar, A.-V. (2010). Uppermost Cretaceous megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings: Search for explanation. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(3-4), 360-374. doi:10.1016/j.palaeo.2010.03.031Izquierdo LA, Montero D, Pérez G, Urién V, Meijide M. 2001. Macroestructura de huevos de dinosaurios en el Cretácico superior de “La Rosaca” (Burgos, España). Actas de las I Jornadas Internacionales Sobre Paleontología de Dinosaurios y su Entorno. Ed. Colectivo Arqueológico y Paleontológico de Salas. Salas de los Infantes. p. 389–395.Jackson FD. 2007. Titanosaur reproductive biology: comparison of the Auca Mahuevo Titanosaur nesting locality (Argentina), to the Pinyes Megaloolithus nesting locality (Spain) [PhD dissertation]. Bozeman (MT): Montana State University.Jackson, F. D., Garrido, A., Schmitt, J. G., Chiappe, L. M., Dingus, L., & Loope, D. B. (2004). Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquen Province, Argentina. Journal of Vertebrate Paleontology, 24(4), 913-922. doi:10.1671/0272-4634(2004)024[0913:amtdse]2.0.co;2Jackson, F. D., Varricchio, D. J., Jackson, R. A., Vila, B., & Chiappe, L. M. (2008). Comparison of water vapor conductance in a titanosaur egg from the Upper Cretaceous of Argentina and a Megaloolithus siruguei egg from Spain. Paleobiology, 34(2), 229-246. doi:10.1666/0094-8373(2008)034[0229:cowvci]2.0.co;2López-Martı́nez, N., Moratalla, J. J., & Sanz, J. L. (2000). Dinosaurs nesting on tidal flats. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1-2), 153-163. doi:10.1016/s0031-0182(00)00063-8Mohabey, D. M. (1998). Systematics of Indian Upper Cretaceous dinosaur and chelonian eggshells. Journal of Vertebrate Paleontology, 18(2), 348-362. doi:10.1080/02724634.1998.10011063Moratalla JJ. 1993. Restos indirectos de dinosaurios del registro español: paleoicnología de la Cuenca de (Jurásico superior-Cretácico inferior) y paleoología del Cretácico superior [PhD dissertation]. Madrid: Universidad Autónoma de Madrid.Moreno-Azanza, M., Bauluz, B., Canudo, J. I., Gasca, J. M., & Torcida Fernández-Baldor, F. (2016). Combined Use of Electron and Light Microscopy Techniques Reveals False Secondary Shell Units in Megaloolithidae Eggshells. PLOS ONE, 11(5), e0153026. doi:10.1371/journal.pone.0153026Moreno-Azanza, M., Bauluz, B., Canudo, J. I., Puértolas-Pascual, E., & Sellés, A. G. (2013). A re-evaluation of aff. Megaloolithidae eggshell fragments from the uppermost Cretaceous of the Pyrenees and implications for crocodylomorph eggshell structure. Historical Biology, 26(2), 195-205. doi:10.1080/08912963.2013.786067Oms, O., Dinarès-Turell, J., Vicens, E., Estrada, R., Vila, B., Galobart, À., & Bravo, A. M. (2007). Integrated stratigraphy from the Vallcebre Basin (southeastern Pyrenees, Spain): New insights on the continental Cretaceous−Tertiary transition in southwest Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(1-2), 35-47. doi:10.1016/j.palaeo.2007.02.039Ortega, F., Bardet, N., Barroso-Barcenilla, F., Callapez, P. M., Cambra-Moo, O., Daviero- Gómez, V., … Sanz, J. L. (2015). The biota of the Upper Cretaceous site of «Lo Hueco» (Cuenca, Spain). Journal of Iberian Geology, 41(1). doi:10.5209/rev_jige.2015.v41.n1.48657Rasskin-Gutman, D., Elez, J., Esteve-Altava, B., & López-Martínez, N. (2020). Reconstruction of the internal structure of the pore system of a complex dinosaur eggshell (Megaloolithus siruguei). Spanish Journal of Palaeontology, 28(1), 61. doi:10.7203/sjp.28.1.17831Riera, V., Oms, O., Gaete, R., & Galobart, À. (2009). The end-Cretaceous dinosaur succession in Europe: The Tremp Basin record (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 283(3-4), 160-171. doi:10.1016/j.palaeo.2009.09.018Sellés, A. G., Bravo, A. M., Delclòs, X., Colombo, F., Martí, X., Ortega-Blanco, J., … Galobart, À. (2013). Dinosaur eggs in the Upper Cretaceous of the Coll de Nargó area, Lleida Province, south-central Pyrenees, Spain: Oodiversity, biostratigraphy and their implications. Cretaceous Research, 40, 10-20. doi:10.1016/j.cretres.2012.05.004Tanaka, K., & Zelenitsky, D. K. (2014). Comparisons between experimental and morphometric water vapor conductance in the eggs of extant birds and crocodiles: implications for predicting nest type in dinosaurs. Canadian Journal of Zoology, 92(12), 1049-1058. doi:10.1139/cjz-2014-0078Vianey-Liaud, M., Khosla, A., & Garcia, G. (2003). Relationships between European and Indian dinosaur eggs and eggshells of the oofamily Megaloolithidae. Journal of Vertebrate Paleontology, 23(3), 575-585. doi:10.1671/0272-4634(2003)023[0575:rbeaid]2.0.co;2Vianey-Liaud, M., & Lopez-Martinez, N. (1997). Late Cretaceous dinosaur eggshells from the Tremp Basin, southern Pyrenees, Lleida, Spain. Journal of Paleontology, 71(6), 1157-1171. doi:10.1017/s002233600003609xVila, B., Galobart, À., Canudo, J. I., Le Loeuff, J., Dinarès-Turell, J., Riera, V., … Gaete, R. (2012). The diversity of sauropod dinosaurs and their first taxonomic succession from the latest Cretaceous of southwestern Europe: Clues to demise and extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 350-352, 19-38. doi:10.1016/j.palaeo.2012.06.008(2010). Lethaia, 43(2). doi:10.1111/let.2010.43.issue-2Vila, B., Jackson, F. D., Fortuny, J., Sellés, A. G., & Galobart, À. (2010). 3-D Modelling of Megaloolithid Clutches: Insights about Nest Construction and Dinosaur Behaviour. PLoS ONE, 5(5), e10362. doi:10.1371/journal.pone.0010362Vila, B., Riera, V., Bravo, A. M., Oms, O., Vicens, E., Estrada, R., & Galobart, À. (2011). The chronology of dinosaur oospecies in south-western Europe: Refinements from the Maastrichtian succession of the eastern Pyrenees. Cretaceous Research, 32(3), 378-386. doi:10.1016/j.cretres.2011.01.009Vila, B., Sellés, A. G., & Brusatte, S. L. (2016). Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretaceous Research, 57, 552-564. doi:10.1016/j.cretres.2015.07.003Vissers, R. L. M., & Meijer, P. T. (2012). Iberian plate kinematics and Alpine collision in the Pyrenees. Earth-Science Reviews, 114(1-2), 61-83. doi:10.1016/j.earscirev.2012.05.001Wright, V. P., & Platt, N. H. (1995). Seasonal wetland carbonate sequences and dynamic catenas: a re-appraisal of palustrine limestones. Sedimentary Geology, 99(2), 65-71. doi:10.1016/0037-0738(95)00080-

    Spatially and Financially Explicit Population Viability Analysis of Maculinea alcon in The Netherlands

    Get PDF
    Background The conservation of species structured in metapopulations involves an important dilemma of resource allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because none of the population dynamics models developed so far included dispersal. Methodology/Principal Findings We developed the first spatially and financially explicit Population Viability Analysis model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features are affecting the ability to enhance population viability of four basic management options, designed to incur the same costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch network. Conclusions/Significance Our results underline the importance of spatial and regional aspects (dispersal and connectivity) in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate that failure to account for the cost of management scenarios can lead to very different conclusions

    Distortion of symmetrical introgression in a hybrid zone: evidence for locus-specific selection and uni-directional range expansion

    No full text
    The fate of species integrity upon natural hybridization depends on the interaction between selection and dispersal. The relative significance of these processes may be studied in the initial phase of contact before selection and gene flow reach equilibrium. Here we study a hybrid zone of two salamander species, Lyciasalamandra antalyana and Lyciasalamandra billae, at the initial phase of hybridization. We quantify the degree and mode of introgression using nuclear and mtDNA markers. The hybrid zone can be characterized as an abrupt transition zone, the central hybrid zone being only c. 400 m, but introgressed genes were traced up to 3 km. Introgression was traced in both sexes but gene flow may be slightly male-biased. Indirect evidence suggests that hybrid males are less viable than females. Introgression occurred at two levels: (1) locus-specific selection led to different allelic introgression patterns independent of species, while (2) asymmetrical species-level introgression occurred predominately from L. antalyana to L. billae due to range expansion of the former. This indicates that foreign genes can be incorporated into novel genomic environments, which in turn may contribute to the great diversity of morphological variants in Lyciasalamandra
    corecore