77 research outputs found

    Precise parameter synthesis for stochastic biochemical systems

    Get PDF
    We consider the problem of synthesising rate parameters for stochastic biochemical networks so that a given time-bounded CSL property is guaranteed to hold, or, in the case of quantitative properties, the probability of satisfying the property is maximised or minimised. Our method is based on extending CSL model checking and standard uniformisation to parametric models, in order to compute safe bounds on the satisfaction probability of the property. We develop synthesis algorithms that yield answers that are precise to within an arbitrarily small tolerance value. The algorithms combine the computation of probability bounds with the refinement and sampling of the parameter space. Our methods are precise and efficient, and improve on existing approximate techniques that employ discretisation and refinement. We evaluate the usefulness of the methods by synthesising rates for three biologically motivated case studies: infection control for a SIR epidemic model; reliability analysis of molecular computation by a DNA walker; and bistability in the gene regulation of the mammalian cell cycle

    Petri-net-based 2D Design of DNA Walker Circuits

    Get PDF
    We consider localised DNA computation, where a DNA strand walks along a binary decision graph to compute a binary function. One of the challenges for the design of reliable walker circuits consists in leakage transitions, which occur when a walker jumps into another branch of the decision graph. We automatically identify leakage transitions, which allows for a detailed qualitative and quantitative assessment of circuit designs, design comparison, and design optimisation. The ability to identify leakage transitions is an important step in the process of optimising DNA circuit layouts where the aim is to minimise the computational error inherent in a circuit while minimising the area of the circuit. Our 2D modelling approach of DNA walker circuits relies on coloured stochastic Petri nets which enable functionality, topology and dimensionality all to be integrated in one two-dimensional model. Our modelling and analysis approach can be easily extended to 3-dimensional walker systems

    Climate negotiators’ and scientists’ assessments of the climate negotiations

    Get PDF
    Climate negotiation outcomes are difficult to evaluate objectively because there are no clear reference scenarios. Subjective assessments from those directly involved in the negotiations are particularly important, as this may influence strategy and future negotiation participation. Here we analyze the perceived success of the climate negotiations in a sample of more than 600 experts involved in international climate policy. Respondents were pessimistic when asked for specific assessments of the current approach centered on voluntary pledges, but were more optimistic when asked for general assessments of the outcomes and usefulness of the climate negotiations. Individuals who are more involved in the negotiation process tended to be more optimistic, especially in terms of general assessments. Our results indicate that two reinforcing effects are at work: a high degree of involvement changes individuals’ perceptions and more optimistic individuals are more inclined to remain involved in the negotiations

    Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis

    Get PDF
    Background: Patellofemoral pain is considered one of the most common forms of knee pain, affecting adults, adolescents, and physically active populations. Inconsistencies in reported incidence and prevalence exist and in relation to the allocation of healthcare and research funding, there is a clear need to accurately understand the epidemiology of patellofemoral pain. Methods: An electronic database search was conducted, as well as grey literature databases, from inception to June 2017. Two authors independently selected studies, extracted data and appraised methodological quality. If heterogeneous, data were analysed descriptively. Where studies were homogeneous, data were pooled through a meta-analysis. Results: 23 studies were included. Annual prevalence for patellofemoral pain in the general population was reported as 22.7%, and adolescents as 28.9%. Incidence rates in military recruits ranged from 9.7 – 571.4/1,000 person-years, amateur runners in the general population at 1080.5/1,000 person-years and adolescents amateur athletes 5.1% - 14.9% over 1 season. One study reported point prevalence within military populations as 13.5%. The pooled estimate for point prevalence in adolescents was 7.2% (95% Confidence Interval: 6.3% - 8.3%), and in female only adolescent athletes was 22.7% (95% Confidence Interval 17.4% - 28.0%). Conclusion: This review demonstrates high incidence and prevalence levels for patellofemoral pain. Within the context of this, and poor long term prognosis and high disability levels, PFP should be an urgent research priority

    In vivo expression of innate immunity markers in patients with mycobacterium tuberculosis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs), Coronin-1 and Sp110 are essential factors for the containment of <it>Mycobacterium tuberculosis </it>infection. The purpose of this study was to investigate the <it>in vivo </it>expression of these molecules at different stages of the infection and uncover possible relationships between these markers and the state of the disease.</p> <p>Methods</p> <p>Twenty-two patients with active tuberculosis, 15 close contacts of subjects with latent disease, 17 close contacts of subjects negative for mycobacterium antigens and 10 healthy, unrelated to patients, subjects were studied. Quantitative mRNA expression of Coronin-1, Sp110, TLRs-1,-2,-4 and -6 was analysed in total blood cells <it>vs </it>an endogenous house-keeping gene.</p> <p>Results</p> <p>The mRNA expression of Coronin-1, Sp110 and TLR-2 was significantly higher in patients with active tuberculosis and subjects with latent disease compared to the uninfected ones. Positive linear correlation for the expression of those factors was only found in the infected populations.</p> <p>Conclusions</p> <p>Our results suggest that the up-regulation of Coronin-1 and Sp110, through a pathway that also includes TLR-2 up-regulation may be involved in the process of tuberculous infection in humans. However, further studies are needed, in order to elucidate whether the selective upregulation of these factors in the infected patients could serve as a specific molecular marker of tuberculosis.</p

    Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma

    Get PDF
    BACKGROUND: Germline mutations of the SDHD, SDHB and SDHC genes, encoding three of the four subunits of succinate dehydrogenase, are a major cause of hereditary paraganglioma and pheochromocytoma, and demonstrate that these genes are classic tumor suppressors. Succinate dehydrogenase is a heterotetrameric protein complex and a component of both the Krebs cycle and the mitochondrial respiratory chain (succinate:ubiquinone oxidoreductase or complex II). METHODS: Using conformation sensitive gel electrophoresis (CSGE) and direct DNA sequencing to analyse genomic DNA from peripheral blood lymphocytes, here we describe the mutation analysis of the SDHB and SDHC genes in 37 patients with sporadic (i.e. no known family history) head and neck paraganglioma and five pheochromocytoma and/or paraganglioma families. RESULTS: Two sporadic patients were found to have a SDHB splice site mutation in intron 4, c.423+1G>A, which produces a mis-spliced transcript with a 54 nucleotide deletion, resulting in an 18 amino acid in-frame deletion. A third patient was found to carry the c.214C>T (p.Arg72Cys) missense mutation in exon 4 of SDHC, which is situated in a highly conserved protein motif that constitutes the quinone-binding site of the succinate: ubiquinone oxidoreductase (SQR) complex in E. coli. Together with our previous results, we found 27 germline mutations of SDH genes in 95 cases (28%) of sporadic head and neck paraganglioma. In addition all index patients of five families showing hereditary pheochromocytoma-paraganglioma were found to carry germline mutations of SDHB: four of which were novel, c.343C>T (p.Arg115X), c.141G>A (p.Trp47X), c.281G>A (p.Arg94Lys), and c.653G>C (p.Trp218Ser), and one reported previously, c.136C>T, p.Arg46X. CONCLUSION: In conclusion, these data indicate that germline mutations of SDHB and SDHC play a minor role in sporadic head and neck paraganglioma and further underline the importance of germline SDHB mutations in cases of familial pheochromocytoma-paraganglioma

    The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis.

    Get PDF
    How the proto-oncogene c-Myc balances the processes of stem-cell self-renewal, proliferation and differentiation in adult tissues is largely unknown. We explored c-Myc's transcriptional roles at the epidermal differentiation complex, a locus essential for skin maturation. Binding of c-Myc can simultaneously recruit (Klf4, Ovol-1) and displace (Cebpa, Mxi1 and Sin3a) specific sets of differentiation-specific transcriptional regulators to epidermal differentiation complex genes. We found that Sin3a causes deacetylation of c-Myc protein to directly repress c-Myc activity. In the absence of Sin3a, genomic recruitment of c-Myc to the epidermal differentiation complex is enhanced, and re-activation of c-Myc-target genes drives aberrant epidermal proliferation and differentiation. Simultaneous deletion of c-Myc and Sin3a reverts the skin phenotype to normal. Our results identify how the balance of two transcriptional key regulators can maintain tissue homeostasis through a negative feedback loop

    Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2

    Get PDF
    LIN-35 is the sole C. elegans representative of the pocket protein family, which includes the mammalian Retinoblastoma protein pRb and its paralogs p107 and p130. In addition to having a well-established and central role in cell cycle regulation, pocket proteins have been increasingly implicated in the control of critical and diverse developmental and cellular processes. To gain a greater understanding of the roles of pocket proteins during development, we have characterized a synthetic genetic interaction between lin-35 and slr-2, which we show encodes a C2H2-type Zn-finger protein. Whereas animals harboring single mutations in lin-35 or slr-2 are viable and fertile, lin-35; slr-2 double mutants arrest uniformly in early larval development without obvious morphological defects. Using a combination of approaches including transcriptome profiling, mosaic analysis, starvation assays, and expression analysis, we demonstrate that both LIN-35 and SLR-2 act in the intestine to regulate the expression of many genes required for normal nutrient utilization. These findings represent a novel role for pRb family members in the maintenance of organ function. Our studies also shed light on the mechanistic basis of genetic redundancy among transcriptional regulators and suggest that synthetic interactions may result from the synergistic misregulation of one or more common targets

    Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions

    Get PDF
    The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells
    • …
    corecore