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Abstract
We consider localised DNA computation, where a DNA strand walks along a binary decision graph to compute a binary

function. One of the challenges for the design of reliable walker circuits consists in leakage transitions, which occur when a

walker jumps into another branch of the decision graph. We automatically identify leakage transitions, which allows for a

detailed qualitative and quantitative assessment of circuit designs, design comparison, and design optimisation. The ability

to identify leakage transitions is an important step in the process of optimising DNA circuit layouts where the aim is to

minimise the computational error inherent in a circuit while minimising the area of the circuit. Our 2D modelling approach

of DNA walker circuits relies on coloured stochastic Petri nets which enable functionality, topology and dimensionality all

to be integrated in one two-dimensional model. Our modelling and analysis approach can be easily extended to 3-di-

mensional walker systems.

Keywords Stochastic Petri nets � Coloured Petri nets � DNA walker systems � Design assessment � Leakage transitions �
Structural analysis � Qualitative analysis � Stochastic analysis � Simulative model checking

1 Introduction

DNA computing building on DNA strands (molecules)

interacting by DNA strand displacement (DSD) is a

research focus in computer science and nanomedicine alike

(Boemo et al. 2016). DSD can be thought of as a formal

computing language (Phillips and Cardelli 2009) for the

engineering of DNA-only chemical controllers, sensors,

etc. (Chen et al. 2013). Two DSD categories can be dis-

tinguished (Boemo et al. 2016). (1) In floating DNA sys-

tems, DNA strands are freely moving molecules in a well-

mixed solution; i.e., there are no geometric constraints

preventing two molecules from interacting. (2) Localised

DNA systems impose constraints by tethering DNA strands

(anchorages) to a rigid lattice, forming a DSD circuit. An

additional DNA strand (walker) may move along the lattice

organised in origami tiles, thus performing a computation,

e.g., by walking along a binary decision tree, possibly

reduced to a directed acyclic graph (DAG), yielding a bi-

nary decision DAG, in the following briefly called DAG.

Different options for programming a given DSD circuit are

known to force a walker to follow a specific path (Boemo

et al. 2016).

There are a couple of challenges for the design of reli-

able DSD circuits. DSD circuits are inherently undirected,

and thus do not directly encode DAGs. A walker may take

a shortcut or even jump into another path; the latter is

known as a leakage transition. Therefore, the experimental

design of DSD circuits clearly calls for tool support.

Floating systems are supported by the Microsoft Visual

DSD tool (Lakin et al. 2011), while localised systems are

considered in Dannenberg et al. (2015) and Barbot and

Kwiatkowska (2015); none supports the automated identi-

fication of leakage transitions. Modelling DNA computing

devices with freely moving molecules closely resembles

modelling approaches for chemical reaction networks as

they are widely used in systems and synthetic biology; e.g.,

we could deploy Petri nets as umbrella language opening

the doors to qualitative, stochastic and deterministic
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analysis techniques, as we have previously demonstrated in

Gilbert et al. (2007), Heiner et al. (2008) and Blätke et al.

(2015).

1.1 Contributions

In this paper we consider localised DNA computation. We

start from the modelling approach for walker circuits

introduced in Dannenberg et al. (2015) and represented as

stochastic Petri nets in Barbot and Kwiatkowska (2015),

with the purpose of stochastic analysis to assess the relia-

bility of the circuit design. To assist the circuit designer by

a more detailed assessment, we refine the stochastic anal-

ysis, complemented by merely qualitative, and thus com-

putationally less expensive analyses. More specifically we

discuss the automated identification of leakage transitions

and how to quantitatively compare different circuit designs

for a given DAG. Leakage can be reduced by employing a

circuit layout topology that optimises the distance between

any two anchorages to avoid potential leakage transitions,

and which in general can be achieved by increasing the

area of the circuit for a given size (in terms of number of

anchorages).

However, one goal of DNA circuit design is in fact to

minimise the circuit area (Jung et al. 2015). Thus the

ability to identify leakage transitions is an important step in

the process of optimising DNA circuit layouts where the

aim is to minimise the computational error inherent in a

circuit while minimising the area of the circuit. This trade-

off is quantified by a combination of structural and prob-

abilistic analysis techniques including performability

measures building on impulse rewards.

Moreover, we show how coloured Petri nets can be used

to obtain a generic template for specifying DNA walker

systems, while preserving the ability of a mathematically

rigorous assessment of the system specification. This

template may be easily adjusted to different stepping sce-

narios or distance notions without requiring programming

skills. In this paper, we consider 2-dimensional walker

systems. However, the extension of our flexible modelling

approach to the 3-dimensional case is straightforward.

1.2 Outline

In the next section we discuss the modelling of DNA

walker circuits, first as planar undirected graphs, which we

convert into Petri nets to be able to analyse their execution,

and finally into coloured Petri nets to obtain a concise and

flexible circuit specification incorporating 2D topology

information. Afterwards we introduce in Sect. 3 our new

technique to identify leakage transitions, followed by a

brief overview on Petri net related analysis techniques with

a special focus on stochastic analyses in Sect. 4. We

demonstrate the usability of our techniques by comparing

two layouts for a given DNA walker circuit taken

from Dannenberg et al. (2015). We conclude our paper in

Sect. 5 with a brief summary and outlook on future work.

2 Modelling

2.1 DNA walker systems

We consider programmable DNA walker circuits intro-

duced in Yin et al. (2004), Bath et al. (2005), Wickham

et al. (2011) and Wickham et al. (2012), which are known

to exhibit an inherently probabilistic behaviour. DNA

walker circuits have been modelled and analysed with the

PRISM tool (Dannenberg et al. 2015; Dannenberg 2016),

and later by help of stochastic Petri nets (Barbot and

Kwiatkowska 2015). To be self-contained we recall the

basic facts required to understand our modelling approach

deploying coloured stochastic Petri nets.

The DNA walker circuits under consideration are sup-

posed to compute a Boolean function over n input vari-

ables, i.e., Bn ! B. Formally, a DNA walker circuit

defines a planar undirected graph, in the following called

DSD graph; see Fig. 1 for an example. Vertices stand for

anchorages and undirected edges for possible walker steps.

Vertices with two adjacent edges form linear tracks of the

walker circuit, while vertices with three adjacent edges

represent gates, i.e., either forking or joining junction

Fig. 1 DSD graph representing the boolean function x _ y _ z. Colour

code: blue—INIT, green—FORK, orange—JOIN, red—FINAL;

uncoloured—NORM; � label not shown. (Color figure online)
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points. There are no vertices with more than three adjacent

edges, because there is a lack of experimental evi-

dence (Wickham et al. 2011, 2012).

Anchorages may be labelled with literals over the

domain of the Boolean function to be evaluated. The pro-

gramming of the circuit is achieved by blocking those

anchorages whose labels are evaluated to false for the

given input values. These observations are summarised in

the following definition which builds on the one given in

Dannenberg (2016).

Definition 1 (DSD graph, syntax) A DSD graph is a tuple

G ¼ ðV;E; In; L;OutÞ, where

• V is the set of vertices, with

V ¼ VINIT [ VNORM [ VFORK [ VJOIN [ VFINAL, and

• VINIT ¼ fv0g—the unique initial anchorage,

• VNORM—the vertex set of normal anchorages,

• VFORK—the vertex set of fork anchorages,

• VJOIN—the vertex set of join anchorages,

• VFINAL—the vertex set of final anchorages,

and all vertex sets pairwise disjunctive.

• E is the set of undirected edges with E � V � Vð Þ. The
initial vertex v0 and final vertices have one adjacent

edge, normal vertices have two adjacent edges, and

junction vertices (either fork or join) have three

adjacent edges.

• In is a set of Boolean variables, and literalsðInÞ yields
the set of all value assignments over In.

• L is a labelling function with

L:VnVFINAL ! literalsðInÞ [ f�g.
• Out is an output function with Out : VFINAL ! fT ;Fg,

assigning a truth value to each final vertex. h

Remarks

• All undirected edges have exactly one direction which

corresponds to a step directed from the init vertex to

one of the final vertices.

• By definition, the walker can never leave a final node;

however this cannot be deduced from the undirected

graph.

• Binary decision trees do not require join anchorages.

• There has to be at least one final vertex. Usually the

graph will contain at least two final vertices, with each

truth value occurring at least once.

• DSD graphs with exactly one final vertex labelled with

true allow for composability, e.g., exploiting origami

tiles.

• The empty label � permits unblockable anchorages and

is typically not displayed. The unique initial anchorage

v0 should be labelled with �.

• The definition given in Dannenberg (2016) does not

distinguish between fork and join, and it assigns

literalsðinÞ to edges; we assign them to vertices.

A DSD graph may be seen as a finite automaton. It

describes a map with all possible steps a DNA walker may

take to execute the computation encoded in the underlying

(binary decision)DAG for any input values. Accordingly, for

a given set of input values, a walker is supposed to go only to

anchorages,where the evaluation of the label yields true. The

anchorages where the evaluation yields false are considered

to be blocked; thus can not be visited by the walker.

Assuming a consistent labelling, for each possible set of

input values, there exists a path from the initial to a final

vertex delivering the result. If there exists exactly one path,

we call the DSD graph deterministic (Dannenberg 2016).

The DNA walker starts its journey at the unique initial

vertex, and then follows one of the adjacent edges to reach

a neighbouring unblocked vertex, which is repeated until

reaching a final vertex, which by definition can not be left

again. The final vertex reached indicates the result com-

puted by the walker’s journey through the DNA circuit.

Undirected edges can be read as a shorthand notation for

two opposite, directed edges; these two directed edges

stand for possible walker steps in opposite directions. Thus,

a DNA walker does not go on a target-oriented journey; it

can not distinguish between fork and join anchorages, and

all anchorages reachable in one step have the same prob-

ability to be visited next. For example, assuming x ¼ true

in Fig. 1, a walker may repeatedly move along v0 � v1 �
v2 � v4 (in both directions), before accidentally finding the

final vertex v6. To put it differently, the challenge consists

in realising an algorithm working on a directed graph (the

DAG) by use of an undirected graph (the DSD graph).

A DNA walker’s life becomes slightly easier in ‘‘burnt-

bridges’’ circuits, where each position can only be visited

once. As already visited positions are not among the possible

choices of target positions for the next step, the walker will

generally be driven in the direction of a final vertex.

This execution semantics goes beyond standard graph-

based reasoning and is not covered by Definition 1. To

formalise the execution semantics, we convert the DSD

graph into a Petri net—first into a plain Petri net, inspired

by the approach introduced in Barbot and Kwiatkowska

(2015), and afterwards into a coloured Petri nets, which

will yield a concise template for DNA walker circuit

specifications.
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Stepping distance It has been observed that a walker may

move in one step to all unblocked anchorageswithin a certain

radius, but with different probabilities (Wickham et al.

2011). We employ the approximation reported in Dannen-

berg et al. (2015) and assume that the walker stepping rate k

is a piecewise function of the distance d over the maximum

interaction distance dM , the average distance between

anchorages da, and the base rate ks, given by:

k ¼

ks if d� 1:5 � da
ks=50 if 1:5 � da\d� 2:5 � da
ks=100 if 2:5 � da\d� dM
0 else;

8
>><

>>:

ð1Þ

with dM ¼ 24 nm, da ¼ 6:2 nm, ks ¼ 0:009 s�1. This will

generally add further unintentional undirected edges to the

DSD graph; how many and which ones depends on the

topology.

2.2 Petri nets

To be self-contained we briefly recall basic Petri net con-

cepts, which will allow us to formally treat the execution

semantics of DSD graphs; for more details see Heiner et al.

(2008).

Definition 2 (Petri net, syntax) A Petri net is a tuple

N ¼ P; T ; f ;m0ð Þ, where

• P and T are finite, non-empty, and disjoint sets. P is the

set of places, and T is the set of transitions.

• f : ðP� Tð Þ [ T � Pð ÞÞ ! N0 defines the set of direc-

ted arcs, weighted by non-negative integer values.

• m0 : P ! N0 gives the initial marking. h

The pre-set of a node x 2 P [ T is defined as
�x :¼ y 2 P [ Tjf y; xð Þ 6¼ 0f g, and its post-set as

x� :¼ y 2 P [ Tjf x; yð Þ 6¼ 0f g. We extend both notions to a

set of nodes X � P [ T and define the set of all pre-nodes
�X :¼

S
x2X

�x, and the set of all post-nodes X� :¼
S

x2X x
�.

Definition 3 (Petri net, semantics) Let N ¼ ðP; T; f ;m0Þ
be a Petri net.

• A transition t is enabled in a marking m, written as m½ti,
if 8p 2 �t : mðpÞ	 f ðp; tÞ, else disabled.

• A transition t, which is enabled in m, may fire.

• When t in m fires, a new marking m0 is reached, written

as m�!t m0, with

8p 2 P : m0ðpÞ ¼ mðpÞ � f ðp; tÞ þ f ðt; pÞ:

• The firing happens atomically. h

In qualitative (time-free) Petri nets, the firing does not

consume any time, while in stochastic Petri nets,

transitions are associated with generally state-dependent

firing rates. The repeated firing of enabled transitions

(the game) yields the behaviour of a Petri net. Generally,

there are more than one transition enabled in a given

marking. Then the decision of the transition to fire next

is taken non-deterministically in time-free Petri nets, and

in accordance with the stochastic firing rates in

stochastic Petri nets.

Transforming a DSD graph into a Petri net is straight-

forward: the vertices are turned into Petri net places and

directed edges into Petri net transitions, such that the

source and sink vertex of a given edge become the pre- and

post-place of the corresponding transition, see Fig. 2. We

keep the terminology introduced for DSD graphs and speak

of init/norm/fork/join/final places. Finally, we model the

DNA walker by a token which we set on the init place.

Now, playing the token game will produce all possible

paths (of arbitrary length) a walker can take for any input

values, which will sooner or later end in a final place. The

system behaviour has reached an intended dead state (no

transition is enabled).

To control, how often a place can be visited, we adopt

the modelling idea introduced in Barbot and Kwiatkowska

(2015), compare Fig. 3. Initially all unblocked places hold

one token, indicating that the place can be visited, and the

init place holds additionally a token representing the

walker. Then, a directed edge of the DSD graph going from

vertex A to vertex B is modelled by a Petri net transition,

(a) (b)

Fig. 2 DNA walker basic stepping scenarios, with A, B, C non-final

vertices, and D final vertex. a Standard step, b final step

(a) (b)

(c) (d)

Fig. 3 DNA walker stepping scenarios, with A, B, C non-final

vertices and D final vertex. In this paper, we focus on the ‘‘burnt-

bridges’’ setting. a Unguided step, b ‘‘burnt-bridges’’ step, c unguided
final step, d ‘‘burnt-bridges’’ final step
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which checks if the target place B can be visited (is not

blocked). When a walker moves from place A to place B,

then in total for

• Unguided scenario: one token is removed from A,

because the walker leaves A, and one token is kept,

because A can be re-visited,

• ‘‘Burnt-bridges’’ scenario: two tokens are removed

from A, because the walker leaves A, and A can not be

re-visited.

In both cases, a second token is added to B, because the

walker is now on B. In these scenarios, playing the token

game will produce a path the walker takes, which typically

goes straight to a final place (assuming a consistent label-

ling). This path will be unique for deterministic DSD

graphs. By repeatedly re-initialising the Petri net we can

explore all possible paths for any input values, which will

be systematically done in the next section.

In summary, the conversion of a DSD graph into a Petri

net is rather flexible and can be conveniently adjusted to

the particular execution semantics on hand. In the follow-

ing we focus on the ‘‘burnt-bridges’’ scenario, which is also

easier to implement in DNA than in the ‘‘unguided’’

approach (Bath et al. 2005).

2.2.1 Stepping distance

So far, our Petri net model only contains those steps that a

walker may take to follow a path in a given DSD graph. If

the DSD graph were to be directed, these steps would all be

intentional.

The walker stepping rate k (see Eq. 1) introduces three

categories of steps: short distance, medium distance and

long distance steps. Ideally a spatial layout of a walker

circuit should ensure that all short distance steps corre-

spond to edges in the DSD graph. The number of additional

medium and long distance steps obviously depends on the

topology. We discuss the influence of the topology on the

number of steps in each category in Sect. 3.

These additional steps may introduce unwanted beha-

viours. Now, a walker can take shortcuts along a path, jump

backwards in the path just taken, or jump to another

branch, known as leakage steps (transitions). As a result, a

walker can get lost in a non-final vertex without any

neighbouring vertex free to be visited; technically speak-

ing—the system behaviour may reach an unwanted dead

state. To be able to distinguish between wanted and

unwanted dead states, we add a loop (i.e.,a transition

having the same pre- and post-place) to all places mod-

elling final vertices. The number of leakage transitions and

dead states will have an influence on a circuit’s reliability,

which we quantify in Sects. 3 and 4.

2.2.2 Fault model

The programming of a walker circuit according to the

given input values of the Boolean function to be computed

is realised by the blocking of the correspondingly labelled

anchorages. This blocking mechanism may fail. To reflect

this we follow the approach introduced in Barbot and

Kwiatkowska (2015) and add a fault model to the Petri net

we obtained so far, modelling the failure of the blocking

mechanism; see Fig. 4.

In order to simplify the modelling, we now assume that

all places hold initially a token. For the anchorages to be

blocked, this token is removed by additionally added

blocking transitions. However, the firing of blocking tran-

sitions can be prevented by transitions in conflict, repre-

senting the occurrence of a failure. If a failure transition

fires, an anchorage to be blocked remains unblocked, and

thus a walker can move to this anchorage and follow an

incorrect path.

As the programming has to happen before the walker

reaches a junction, transitions representing the blocking

mechanism and its potential failure are modelled as im-

mediate transitions, i.e., transitions which fire without any

time delay and highest priority, thus before any stochastic

transition will fire; see Heiner et al. (2009) for details. We

assume a uniform failure of the blocking mechanism; thus

all pairs of immediate transitions are equally weighted with

a probability of f ¼ 0:7 for the blocking transitions, and a

probability of f ¼ 0:3 for the failure transitions.

2.3 Coloured Petri nets

Colouring yields a form of high-level Petri nets which

permit the description of similar network structures in a

concise way using colours grouped in colour sets—to be

understood as a synonym for discrete data types as known

from programming languages. The colouring principle can

be equally applied to qualitative and quantitative Petri

nets (Blätke et al. 2015), and we use it in this paper to

obtain coloured stochastic Petri nets.

Coloured Petri nets can be constructed from uncoloured

Petri nets by folding, when partitions of places and tran-

sitions are given. These partitions define the colour sets of

the coloured net. Vice versa, coloured Petri nets with finite

colour sets can be automatically unfolded into uncoloured

Petri nets, which then allows the application of all analysis

Fig. 4 Fault model added for every anchorage (place) A to be

blocked. The success rate of block is assumed to be f ¼ 0:7 and of fail
f ¼ 0:3
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techniques available for the corresponding unfolded net

class.

Coloured Petri nets consist, like standard Petri nets, of

places, transitions and arcs. Additionally, a coloured Petri

net is characterised by a set of colour sets, and related net

inscriptions, which together permit to distinguish tokens by

their colours. Defining coloured Petri nets formally would

exceed the given space limit; see Liu et al. (2012) for

details. Here, we confine ourselves to introduce the

essential concepts by means of our application scenario. To

illustrate our modelling ideas we use the toy example

shown in Fig. 5.

Petri nets can be specified graphically or textually; our

tools support both, the latter by use of the Coloured

Abstract Net Description Language (CANDL) for-

mat (Schwarick et al. 2016). The following description is a

combination of both.

2.3.1 Encoding the vertices

DNA walkers perform spatially localised computa-

tion (Barbot and Kwiatkowska 2015). Colour permits to

encode locality, as we have shown in Gilbert et al. (2013).

We start with defining a regular rectangular grid; we need

seven rows and eight columns for our toy example. The 2D

Cartesian coordinates are represented by pairs of colours

(integers).

Now, the tuple (x, y) permits to address the grid element

in the x-th row and the y-th column, compare Fig. 5. To

encode all attributes of the vertices in the DSD graph, we

define two further colour sets of enumeration type.

The colour set Label has to be adjusted to literalsðInÞ of
a given DSD graph; see Definition 1. Now we have all

ingredients to introduce the data type for the vertices,

which is a product type over the colour sets CD1, CD2,

Type, and Label:

We need two coloured places of this type, A—for the

anchorages, and B—for the blocking mechanism.

The existing vertices with their attributes are defined by

the Boolean function Positions by enumerating all tuples.

Each tuple has to be of the type Circuit. Obviously, the

definition of this function needs to be adjusted to the given

DSD graph. Our toy example has six vertices, so we have

six tuples here.

2.3.2 Distance metrics

In our modelling approach we are bound to apply a discrete

metric, which prevents the use of the popular Euclidean

Fig. 5 Toy example to illustrate the use of coloured Petri nets. Colour

code: blue—INIT, green—FORK, red—FINAL; uncoloured—

NORM. (Color figure online)
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distance. The generalized distance Lm ¼ k�km between two

points p1 and p2 in a plane is defined as

kp1 � p2km ¼ jx1 � x2jm þ jy1 � y2jmð Þ
1
m; ð2Þ

also known as Minkowski distance (Cormen et al. 2001).

The rectilinear or Manhattan distance is the L1 distance and

is the sum of the absolute differences of the points’

coordinates

kp1 � p2k1 ¼ jx1 � x2j þ jy1 � y2j: ð3Þ

The Euclidean distance is the L2 distance and gives the

length of the straight line between two points in Euclidean

space

kp1 � p2k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � x2ð Þ2þ y1 � y2ð Þ2
q

: ð4Þ

The L1 distance, also known as Chebyshev or chessboard

distance, is the limit of Lm distances for m ! 1; it is

defined as

kp1 � p2k1 ¼ max jx1 � x2j; jy1 � y2jð Þ; ð5Þ

see Cormen et al. (2001) for details. Equations (3) and (5)

yield discrete results for a discrete grid. The combination

of the Manhattan distance (L1) and the chessboard distance

(L1) provides the required results, see Fig. 6, and we

define corresponding colour functions; see ‘‘Appendix’’

section for details.

2.3.3 Encoding the walker steps

In the following we use the discretised version of Eq. (1):

k ¼

ks if d� dS

ks=50 if dS\d� dM

ks=100 if dM\d� dL

0 else;

8
>><

>>:

ð6Þ

with dS ¼ 3; dM ¼ 5; dL ¼ 8. It is obvious how to adjust

the resolution of the discretisation to the required precision.

We define for each step category

–[short|medium|long] distance [standard|final] steps—a

coloured transition and illustrate it here for the short dis-

tance standard steps, see Fig. 7. In coloured Petri nets, arcs

are weighted with formal sums of tuples: the transition

stepShort requires two tokens with values bound to

(x1, y1, z1, w1) and one token with values bound to

(x2, y2, z2, w2), with the constraint that these two tuples

relate to short distance neighbours and none of them is a

final vertex. This constraint is expressed as transition guard

(given in brackets), which is technically a Boolean

expression. A coloured transition can fire for specific val-

ues bound to all variables occurring at its adjacent arcs, if

its guard is evaluated to true. We introduce the following

functions for the transition guard.

We proceed likewise for the other step categories.

Finally, we introduce a coloured transition loop which

keeps the walker technically alive when having reached a

final vertex; see Fig. 12 in ‘‘Appendix’’ section.

Fig. 6 Discrete distance function; L1 ¼ 3 (green) combined with

L1 ¼ 2 (blue) yield together all discrete points within L2 ¼ 3 (red).

(Color figure online)

Fig. 7 Coloured transition encoding all short distance (regular) steps

according to Fig. 3b
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2.3.4 Blocking of anchorages and fault model

Similarly, we introduce coloured transitions encoding the

blocking and its potential failure for all vertices labelled

with an element of LiteralsðInÞ. For this purpose, we need a
further function:

to guard the firing of the two coloured immediate tran-

sitions block and fail; see Fig. 8. Which anchorages have to

be blocked for a given set of input values is controlled by

the initial marking of the place B.

In the appendix, we provide the complete CANDL

specification for this toy example. It can be used as tem-

plate to specify any DNA walker circuit according to

Definition 1 as coloured SPN; compare workflow, first step

in ‘‘Appendix’’ section. Unfolding these coloured Petri nets

generates Petri nets as described in Sect. 2.2. The adapta-

tion of the template to any of the execution semantics

discussed there is straightforward.

2.3.5 Comparing both Petri net modelling approaches

There is no explicit notion of space in the uncoloured Petri

net model, which encodes in a undifferentiated manner the

intensional transitions of the DSD graph structure together

with medium and long distance relationships. However the

functionality of the DNA circuit is also influenced by the

2D topology of the net, for example leakage, and colour

permits the construction of multi-dimensional mod-

els (Heiner and Gilbert 2013), Thus the coloured Petri net

model explicitly contains all locality data, which are

exploited in the automated unfolding to generate all tran-

sitions according to the defined neighbourhood relations.

Using coloured Petri nets, adjusting the model to different

distance notions does not require programming skills, and

the extension of the approach to the 3-dimensional scenario

is straightforward.

More importantly, the use of colour enables the grid

layout of the graph and inter-anchorage distance to be

directly encoded in the model, and thus leakage can be

directly extracted from the model as we will see in the next

section.

3 Identification of leakage transitions

One of the major issues with existing modelling approa-

ches for DNA walker circuits is the inability to automati-

cally identify leakage transitions. We present an algorithm

that investigates the structure of the unfolded Petri net in

order to identify leakage transitions.

3.1 Place indexing

The underlying idea of the algorithm is to follow the short

distance sub-graph (i.e.,the sub-graph comprising only

short distance steps), which should unambiguously corre-

spond to the DAG of the intended computation. Any fur-

ther short distance transitions make the computational

DAG ambiguous; these additional transitions may be

shortcuts or leakage transitions.

To identify the computational DAG in a given short

distance sub-graph we borrow a simple labelling principle

widely used to efficiently organise the nodes of a left-

complete binary tree in an array data structure (Cormen

et al. 2001). Node labels are defined over Nþ and serve as

indices in the array, and simple operations over the array

indices give direct access to a node’s parent or children

nodes; see Fig. 9. We extend this idea to index DAGs,

which however makes everything a bit more complicated,

as we now have to deal with join vertices as well.

We employ a breadth first search (BFS) over all places

of the net, starting with the INIT place that is indexed with

1. Each place that we have to examine is added to a queue,

i.e.,a first-in–first-out (FIFO) data structure ensuring a BFS.

By indexing the visited places we follow automatically

shortest paths to the final places, but with one exception

that needs special care, see JOIN places below. To identify

the successors of a given place x, we introduce a new

notation x
, providing the set of post-places y of all post-

transitions of x satisfying

8y 2 ðx�Þ� : indexðyÞ 6¼ indexðxÞ ^ ½indexðyÞ
¼ 0 _ indexðyÞ 6¼ indexðxÞ=2�:

While indexing the places, we collect transition types,

which are characterised by triples (pre-node index, post-

node index, [TRACK|FORK|JOIN|LEAK]).

Let’s consider the following cases which may occur

when indexing an unambiguous short distance sub-graph.
Fig. 8 Coloured immediate transitions encoding the blocking and its

potential failure for all vertices labelled with LiteralsðInÞ; compare

Fig. 4
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• The unique place of type INIT has to have exactly one

successor by definition. The successor of INIT gets the

same index, i.e.,1, and the successor is added to the

queue. The transition from INIT to its successor is part

of a (linear) track, thus we add a tuple of (1; 1; TRACK)

to the known transition types.

• For binary forward branching, a node c of type FORK

has 3 short distance neighbours, one corresponds to the

predecessor and the others to the two branches the

computational path may take. The first of the two

successors c
0 gets an index that is two times the index

of c. Then c
0 is added to the queue. The second

successor c
1 gets an index that is two times the index of

c plus one. Then c
1 is added to the queue. The

transitions from c to its successors are FORK transi-

tions, so we add two triples (c, c
i , FORK) to the known

transition types.

• Binary backward branching takes place on a node c of

type JOIN and as such c has 3 short distance

neighbours, two predecessors and one successor. When

the algorithm reaches c, it may happen that two of the

neighbours are not indexed yet. In this case we are not

able to decide which one is the predecessor and which

one is the successor, so we postpone that decision and

treat both places as if they each would be a successor.

The successor gets the same index as c and is added to

the queue. The transitions between c and its successor

are of type TRACK, i.e.,the tuple of both indices and

type TRACK is added to the known transition types.

• A node of type NORM in a linear track has exactly two

short distance neighbours, one corresponds to the

predecessor, and one to the successor node. But there

are several cases to deal with.

1. The successor is not indexed yet and is of type

JOIN. So it gets an index two times of c, and the

transition must be of type JOIN too. The successor

is added to the queue.

2. The successor is not indexed yet and is not of type

JOIN. So it gets the same index as c, because it is

on the same track. Thus the transition is of type

TRACK. The successor is added to the queue.

3. The index of the successor is smaller than the index

of c and the successor is of type JOIN. So we have

reached an already visited backward branch and

add the tuple of indices and type JOIN to the

known transition types.

4. The index of the successor is smaller than the index

of c and the successor is not of type JOIN. So we

override the successor’s index and add it to the

queue, because we are backtracking to a previously

visited track.

In each of the previous cases, the transition between

c and its successor is of type JOIN or TRACK, i.e., a

triple of both indices and type JOIN or TRACK is

added to the known transition types.

A normal node may have 3 short distance neighbours in

the case of leak transitions. In this situation we have to

take care of several cases.

(a) (b)

Fig. 9 Two layouts for the DSD graph given in Fig. 1 for the Boolean

function x _ y _ z. Both layouts are adapted versions from Dannen-

berg (2016). The numbers shown next to the vertices are the indices

generated by Algorithm 1 for the transition classification. a Naive

layout, b optimized layout
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1. The successor is not indexed yet and is of type

JOIN, so it gets an index two times of c and the

transitions must be of type JOIN too, the successor

is added to the queue and is additionally marked.

2. The successor is not indexed yet and is not of type

JOIN, so it gets the same index as c, because they

are on the same track. Thus the transitions are of

type TRACK and the successor is added to the

queue and is additionally marked.

3. The successor is marked and is of type JOIN, so we

have reached an already visited backward branch

and add a tuple of the indices and type JOIN to the

known transition types.

4. The successor is marked and is not of type JOIN, so

we overwrite the successor’s index, if it is smaller,

because we reached a corner with shortcut

transitions.

5. The successor is not marked; thus the transition

must be a leak transition. The transitions from c to

its successors are LEAK transitions, so we add two

triples (c, c
i , LEAK) to the known transition types.

In the first four cases, the transitions between c and its

successor are of type JOIN or TRACK, i.e., tuples of

both indices and type JOIN or TRACK are added to the

known transition types.

• A node of type FINAL has only one short distance

neighbour, which is then a predecessor, so there are no

more nodes to investigate.

The algorithm terminates, when the queue is empty and all

places are indexed. Furthermore, we obtain a set of tuples

defining the known transition types between pairs of indi-

ces. In all other cases, the algorithm sends a warning and

terminates; see Algorithm 1 for its pseudo code.

3.2 Transition classification

Having indexed the short distance sub-graph, we classify

the steps deploying the set of known transition types, i.e.,

the set M computed by Algorithm 1. There are four types

of steps: TRACK, FORK, JOIN and LEAK.

• The pre-place and post-place of a TRACK transition t

have the same index, forming a linear track,

i.e.,indexðt�Þ ¼ indexð�tÞ.
• For the indices of the pre- and post-place of a FORK

transition t, it holds either indexðt�Þ ¼ 2 � indexð�tÞ or

indexðt�Þ ¼ 2 � indexð�tÞ þ 1.

• For the indices of the pre- and post-place of a JOIN

transition t, it holds either indexðt�Þ ¼ 2 � indexð�tÞ or

indexðt�Þ\indexð�tÞ.
• There is one precisely defined case of LEAK transi-

tions—a leak that follows directly after a fork. Thus,

any transition satisfying indexðt�Þ ¼ indexð�tÞ þ 1 or

indexð�tÞ ¼ indexðt�Þ � 1 is a LEAK transition. How-

ever, depending on the layout, a leak can occur

anywhere between two places having different indices.

The classification of steps into TRACK, FORK, JOIN and

LEAK takes place by looking up the set M of known

transition types. If there is a tuple in M of the indices of the

pre- and post-place (or vice-versa) of the step, then the

associated type is allocated to the step. All remaining, non-

classified steps have to be leaks and are classified accord-

ingly. In combination with the three step distances (short,

medium, long), we are able to provide a concise classifi-

cation of all transitions into 12 categories. Short distance

leakage transitions clearly indicate potential for layout

improvement.
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3.3 Case study

For demonstration purposes we use two layouts for the

Boolean function x _ y _ z, which are inspired by Dan-

nenberg (2016). The first layout can be regarded as rather

naive and incorporates some flaws resulting in leakage

transitions, see Fig. 9a. The second layout is optimised in

the sense that the number of leakage transitions is reduced,

see Fig. 9b. Tables 1 and 2 show the results for the two

layouts of Fig. 9. They confirm that the layout in Fig. 9b is

better than the layout in Fig. 9a with respect to leakage

transitions. As expected, the number of short distance

FORK and short distance JOIN transitions are the same for

both layouts.

Table 1 Transition classification for the naive layout in Fig. 9a

Short Medium Long R

Track 64 51 51 166

Fork 12 30 54 96

Join 8 17 33 58

Leak 8 36 98 142

Table 2 Transition classification for the optimised layout in Fig. 9b

Short Medium Long R

Track 66 57 57 180

Fork 12 34 62 108

Join 8 20 30 58

Leak 2 20 58 80
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3.4 Implementation

The algorithm presented for indexing an unambiguous

short distance sub-graph satisfying Definition 1 enables us

to classify step transitions and thereby to identify leakage

transitions. It is implemented in our advanced Petri net

analysis tool MARCIEand is available under http://www-

dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie.

4 Analysis techniques

4.1 Qualitative analysis

We obtain the Petri nets to be analysed by automatic

unfolding of coloured SPNs following our template for

DNA walker circuit specification. Thus, by construction,

we always obtain a very special net class of Petri nets,

which correspond—from a behavioural point of view—to

finite automata. At any point of time, the walker can be at

exactly one anchorage, the walker cannot multiply itself

and can never disappear.

To increase our confidence in the template and to dee-

pen our understanding of its behaviour, we apply a popular

analysis technique relying on an exhaustive description of

all possible behaviour. For this, we compute all markings

(system states) reachable from the initial marking m0 by

any firing sequence of arbitrary length, written as ½m0i,
forming the state space of a given Petri net. The reacha-

bility relation over the state space is known as the reach-

ability graph.

Definition 4 (Reachability graph) Let N ¼ ðP; T; f ;m0Þ
be a Petri net. The reachability graph of N is the graph

RGðN Þ ¼ VN ;ENð Þ, where

• VN :¼ ½m0i is the set of nodes,

• EN :¼ f ðm; t;m0Þ j m;m0 2 ½m0i; t 2 T : m�!t m0g is

the set of arcs. h

The nodes of a reachability graph represent all possible

markings of the net. The arcs in between are labelled by

single transitions, the firing of which causes the related

state change. The reachability graph gives us a finite

automaton representation of all possible single step firing

sequences. Consequently, concurrent behaviour is descri-

bed by enumerating all interleaving firing sequences; so the

reachability graph reflects the behaviour of the net

according to the interleaving semantics.

Generally, reachability graphs tend to be huge. In the

worst-case the state space grows faster than any primitive

recursive function (Priese and Wimmel 2003). In our case,

the size of the state space depends on the total number of

vertices and the number of vertices to be blocked. The state

space may explode for DNA walker models because all

paths have to be generated which a walker can take.

Moreover, the blocking and its failure introduces concur-

rency, which is analysed by considering all interleaving

sequences of the transitions generated by unfolding the

coloured transitions block and fail.

If we succeed in constructing the complete reachability

graph, we are able to decide behavioural Petri net proper-

ties. We recall the most important ones, which include the

three orthogonal behavioural properties—boundedness,

reversibility, and liveness.

• A Petri net is k-bounded iff there is no node in the

reachability graph with a token number larger than k in

any place.

• A Petri net is reversible iff the reachability graph is

strongly connected.

• A Petri net is free of dead states iff the reachability

graph does not contain terminal nodes, i.e., nodes

without outgoing arcs.

• In order to decide liveness, the reachability graph has to

be partitioned into strongly connected components

(SCC), i.e., maximal sets of strongly connected nodes.

A SCC is called terminal if no other SCC is reachable

in the partitioned graph. A transition is live iff it is

included in all terminal SCCs of the partitioned

reachability graph. A Petri net is live iff this holds for

all transitions.

Our Petri nets are by construction:

• 2-bounded: an anchorage can be unblocked (1 token),

and host the walker (1 token) at the same time; no more

moving tokens do exist;

• not reversible: which is an immediate consequence of

the ‘‘burnt-bridges’’ scenario, causing acyclic reacha-

bility graphs;

• generally, not free of dead states: a walker can be

trapped in a non-final vertex without any neighbouring

vertex free to be visited;

• not live: while all transition can occur once in some

behaviour, none of them will ever have a chance to fire

twice in the ‘‘burnt-bridges’’ scenario.

These behavioural properties obviously depend on the

applied execution semantics for the given DSD graph, but

they are shared by all instances following the same tem-

plate. For our execution semantics on hand, they coincide

with our expectations.

For a given net, we determine these properties by help of

Charlie (Heiner et al. 2015) or Marcie (Heiner et al. 2013).

Charlie provides a traditional implementation, which works

fine up to about 500,000 states (on current computer

technique), while Marcie applies symbolic data structures,
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which substantially postpone the situation where the size of

the state space exceeds the available memory.

Having validated our qualitative Petri nets, we are ready

for the next step—the stochastic analysis. Standard

stochastic Petri nets fulfilling the Markov property share

the reachability graph with its underlying qualitative Petri

net. Thus, all qualitative properties are still valid, but their

interpretation can be refined by taking probabilities into

consideration.

Our application scenario requires immediate transitions,

which brings us to Generalised Stochastic Petri Nets

(GSPN). Immediate transitions always fire with highest

priority. With other words, if an immediate transition and a

stochastic transition are concurrently enabled, then in the

stochastic setting, only one firing sequence is considered

(with the immediate transition firing first), while in the

qualitative, time-free setting two firing sequences are

considered (immediate—stochastic, stochastic—immedi-

ate). Consequently, the reachability graph induced by a

GSPN is generally a proper subgraph of its underlying

qualitative Petri net, which in turn means that a property

relying on a given path in the reachability graph may not

hold anymore in a specific sub-graph. For example, a dead

state, reachable in the qualitative Petri net, is not neces-

sarily reachable in the stochastic setting. In contrast, if the

qualitative Petri net is free of dead states, then this holds

for the GSPN as well.

To clarify the situation, we need to deploy stochastic

analysis techniques, discussed in the next section.

4.2 Stochastic analysis

We analyse the probabilistic behaviour of DNA walker by

means of simulative model checking (Rohr 2017). We start

with recalling some properties defined in Dannenberg

(2016), before extending the analysis by additional

properties.

First, we investigate the transient behaviour of the

walker circuits, e.g., how likely it is to have reached some

state at a certain time point. This can be achieved by

probabilistic model checking using the Continuous

Stochastic Logic (CSL) (Baier et al. 2000). It is a

stochastic adaptation of the Computation Tree Logic

(CTL) (Clarke et al. 2001) to formulate properties over

Continuous-time Markov Chains (CTMCs).

In the second part of our stochastic analysis we want to

observe derived measures, also called reward, cost, obser-

ver, gain or bonus. Hence, we add an extra dimension to

the CTMC and while moving on in time, it accumulates an

output. In order to realise this, a reward structure ðq; iÞ is
added to the CTMC. The state reward function q : R !

Rþ
0 defines the rate at which reward qðsÞ is obtained in

state s. That means a reward of s � qðsÞ is earned, if the

CTMC stays in state s for s time units. The impulse reward

function i : R�R ! Rþ
0 assigns to each transition t from

state s to s0 a reward iðs; s0Þ, i.e., a reward iðs; s0Þ is

acquired, if transition t fires. Having this, we can perform

reward analysis by applying the CSL reward exten-

sions (Kwiatkowska et al. 2007), e.g., what is the expected

accumulated reward after some time. For example, rewards

can be used to analyse the behaviour of transitions in terms

of firing occurrences, which can be accumulated by a class

of transitions.

Last but not least, we conduct performability analysis by

use of the Continuous Stochastic Reward Logic

(CSRL) (Haverkort et al. 2002), which is a superset of

CSL. It combines the temporal logic formulas of CSL with

a reward function, and the temporal logic operators have an

additional reward interval. Now it is possible to reason

about the probability to have reached some state at a cer-

tain time point and with respect to an interval on the

accumulated reward.

4.2.1 Transient analysis

We consider four properties for transient analysis and use

the same time bound s ¼ 12;000 s for all properties, this

corresponds to 200 min.

The first property to check is the probability of the

walker to have reached any of the FINAL anchorages at

time point s.

P¼? F
s;s FINAL½ � ð7Þ

The second property is the probability of the walker to have

reached the CORRECT FINAL anchorage according to its

input values at time point s.

P¼? F
s;s CORRECT½ � ð8Þ

The third property is the probability of the walker to get

stuck on its way in a dead state. The atomic proposition

DEADLOCK describes the set of dead states.

P¼? F
s;s DEADLOCK½ � ð9Þ

The forth property is the conditional probability CONDI-

TION of the walker to have reached the CORRECT FINAL

anchorage according to its input values given that it has

reached any of the FINAL anchorages at time point s.

P¼?ðCONDITIONÞ ¼ P¼?ðCORRECT j FINALÞ

¼ P¼? F
s;sCORRECT½ �

P¼? F
s;sFINAL½ �

ð10Þ

Petri-net-based 2D design of DNA walker circuits 173

123



4.2.2 Reward analysis

Observing derived measures requires the definition of a

reward function that extends the CTMC by another

dimension. One such measure is the accumulated number

of steps n taken by a DNA walker on its way from the

initial anchorage to a final anchorage. This is a discrete

random variable, because the DNA walker randomly

chooses steps of different length at each anchorage, except

for the final anchorage. The number of steps a walker takes

on its path can be computed by the impulse reward function

isteps defined by the following reward structure:

The impulse reward function isteps is increased by one

each time a stepping transition is fired and thus computes

the number of steps a walker takes. The expected (average)

number of steps of the DNA walker within s ¼ 12;000 s

can be computed with the CSL formula

Rfstepsg¼? C� s
� �

: ð11Þ

The classification of transitions reveals 12 different classes

in the walker circuit under study, e.g., track-short, fork-

medium, leak-long, etc.; and we are able to observe them

directly. The number of steps of a certain class a DNA

walker takes on its path can be computed by the impulse

reward function i�class
 defined by the following reward

structure:

We define one transition reward structure entry per

classified transition identified with Algorithm 1. Thus the

expected (average) number of classified steps the walker

takes within s ¼ 12;000 s can be computed with the CSL

formula

Rf�class
g¼? C� s
� �

: ð12Þ

4.2.3 Performability analysis

The reward analysis reveals the expected number of steps

or leakage steps, but we are interested in the probabilities

for different numbers of steps or leakage steps, too. Such

probabilities are known as performability. We are able to

compute the probability distribution of the related random

variable deploying simulative model checking of CSRL in

combination with impulse rewards (Rohr 2017). We com-

pute the probability to reach a FINAL anchorage within

s ¼ 12;000 s by taking exactly n steps with the following

CSRL formula

Pfstepsg¼? Fs;sn;nFINAL
h i

: ð13Þ

Equation (13) defines the probability mass function (PMF)

for the discrete probability distribution of the discrete

random variable n.

The probability to reach a FINAL anchorage within s ¼
12;000 s and by taking at most n steps can be computed by

the CSRL formula

Pfstepsg¼? F
s;s
0;nFINAL

h i
: ð14Þ

Equation (14) is the cumulative distribution function

(CDF) for the discrete probability distribution of the dis-

crete random variable n.

Exchanging the used reward function from isteps to

i�class
 allows us to compute the PDF

Pf�class
g¼? Fs;sn;nFINAL
h i

ð15Þ

and the CDF

Pf�class
g¼? F
s;s
0;nFINAL

h i
ð16Þ

of the discrete random variable n for each class of steps,

i.e., the number of steps of each class a DNA walker takes

up to time point s ¼ 12;000 s.

4.2.4 Case study

At first we compute the transient probabilities of Eqs. (7)–

(10) for the two layouts. The results of the transient anal-

ysis are shown in Table 3. It turned out that both layouts

perform equally well in the transient analysis. This leads to

the supposition that achieving the reduced number of leak

transitions is bought at the cost of a higher probability of

reaching a dead state, due to the longer tracks.

Second we compute the expected number of steps

according to Eq. (11) for the two layouts in Fig. 9. For the

naive layout, the expected number of steps of one path
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averaged over all possible input values is 15.59, while it is

for the optimised layout 16.02. The slightly higher value

for the optimised layout can be explained by the longer

tracks and the higher number of vertices.

Next we report the results for expectation analysis

exploiting rewards for each class of steps according to

Eq. (12). Tables 4 and 5 show the results, which are in-line

with the static analysis in Tables 1 and 2. In the naive

layout, a short distance leakage transition occurs in the

average in every second run, while for the optimised lay-

out, it occurs about in 1 run out of 10. When we look on

leakage transitions in total, then we have in the naive

layout in average about 1 leakage transition per run, which

drops for the optimised layout below 1 leakage transition in

every second run.

The last point in our stochastic analysis is the compu-

tation of the performability for the overall number of steps

needed to reach a FINAL anchorage. Therefore, we check

Eq. (13) for several values of n. Figures 10 and 11 show

the probability distributions for both layouts. The second

peak in Fig. 10 and its wider curve suggest a higher vari-

ability in the number of steps required to reach a FINAL

anchorage in the naive layout, while the narrow, almost

bell-shaped curve in Fig. 11 suggests a more constant

number of steps in the optimised layout. This difference in

the variability may be caused by the different numbers of

leakage transitions.

4.2.5 Design trade-off

The results of structural and probabilistic analysis illustrate

that we are facing an optimization problem (as discussed in

terms of ‘Design principles’ in Dannenberg (2016)):

Table 3 Transient probabilities averaged over all possible input values for the naive layout in Fig. 9a and the optimised layout in Fig. 9b

Final (%) Correct (%) Deadlock (%) Condition (%)

Naive 68.66 62.93 9.64 91.66

Optimised 59.48 54.53 13.11 91.68

Table 4 Expected reward averaged over all possible input values for

the naive layout in Fig. 9a

Short Medium Long R

Track 9.897 0.282 0.202 10.354

Fork 1.694 0.163 0.172 2.029

Join 1.208 0.139 0.168 1.515

Leak 0.483 0.189 0.311 0.983

Table 5 Expected reward averaged over all possible input values for

the optimised layout in Fig. 9b

Short Medium Long R

Track 10.693 0.354 0.253 11.300

Fork 1.669 0.183 0.206 2.058

Join 1.286 0.170 0.170 1.626

Leak 0.114 0.135 0.195 0.444

Fig. 10 Probability distribution of Eq. (13) computed for n ¼ ð0; 30Þ
and the naive layout

Fig. 11 Probability distribution of Eq. (13) computed for n ¼ ð0; 30Þ
and the optimised layout
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• Objective 1: reduce number of leakage transitions (as

more leakage transitions increase the probability of

getting the wrong result).

• Objective 2: reduce length of tracks (as longer tracks

increase the deadlock probability).

Both objectives contradict each other: number of leakage

transitions are reduced by increasing the length of tracks;

and vice versa; so the challenge in circuit design is to find

the right balance between both objectives. Compared

with Dannenberg (2016), we are able to quantify objective

1 by a structural analysis. In future work, it would be

interesting to explore if also objective 2 could be quantified

by a structural analysis (e.g.,total length of shortest linear

paths), to obtain a cheaper circuit design assessment.

5 Conclusions

In this paper we have reported a novel technique for the 2D

modelling of DNA walker circuits using coloured

stochastic Petri nets which enables functionality, topology

and dimensionality all to be integrated in one two-dimen-

sional model.

The move to coloured Petri nets not only brings a con-

cise representation, but even more importantly a high

degree in flexibility with respect to the topology of the

anchorages and distance measures of the walker steps, both

can be adjusted on the modelling level, no programming

required. The anchorages to be blocked are automatically

derived from the given input values (true or false) for all

parameters of the given Boolean function, this is less error

prone than setting them manually.

In terms of technology, the coloured approach enables

construction of concise templated models which can be

robustly expanded using standard mechanisms built into

coloured Petri net tools. Other approaches require indi-

vidually handcoded programs for translating circuit

descriptions into SPN models (Barbot and Kwiatkowska

2015) or PRISM models (Dannenberg et al. 2015).

The concept of immediate transitions as in Petri nets

does not exist in the PRISM language, thus it has to be

approximated by very high transition rates, which increase

the stiffness of the system and may cause numerical issues.

Automatic identification of leakage transitions is a rel-

evant problem, which has remained unsolved until this

research. We classify transitions between anchorages into

short, medium and long distance categories, which enables

a fine-grained analysis of the behaviour of the model. We

present an algorithm for the automatic identification of

leakage transitions, exploiting the unfolding of the

coloured Petri net model. Leakage transitions are classified

according to the used distance measure. Our algorithm is

innovative, flexible and works for any kind of topologies

and distance measures. The identification/classification of

leakage transitions is merely a qualitative analysis tech-

nique and thus less expensive than CTMC based analysis.

We show how advanced stochastic analysis including

impulse rewards and performability analysis based on

simulative CSRL model checking can be deployed to

explore the stochastic behaviour of DNA circuit models.

To the best of our knowledge this technique is not sup-

ported by other tools so far.

We illustrate the application of these techniques to

compare the performance of two alternative layouts for an

example DNA walker circuit. The results confirm that

leakage can be reduced by employing a circuit layout

topology that increases the distance between any two

anchorages potentially permitting leakage transitions. An

implication of this is that leakage reduction involves

increasing the area of the circuit for a given number of

anchorages. Since one goal of DNA circuit design is to

minimise circuit area, the ability to identify leakage tran-

sitions is an important step in the process of optimising

DNA circuit layouts, taking into account minimisation of

both the computational error and area of circuits. More-

over, the use of multi-dimensional models opens the way to

multi-dimensional model checking along the lines of Pârvu

and Gilbert (2014).

Acknowledgements We would like to thank Benoı̂t Barbot for pro-

viding the Petri net files for all case studies and the program source to

generate them as used in Barbot and Kwiatkowska (2015).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

This appendix provides a full documentation of the toy

example, see Fig. 5, employed in Sect. 2.3 to explain the

use of coloured Petri nets for the specification of DNA

walker circuits. All files can be found at http://www-dssz.

informatik.tu-cottbus.de/DSSZ/Software/Examples, and

the software tools required at http://www-dssz.informatik.

tu-cottbus.de/DSSZ/Software/Software.

Workflow

Our workflow deploys the following tools:
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• MARCIE (Heiner et al. 2013)—leakage detection,

qualitative and stochastic analysis;

• Snoopy (Heiner et al. 2012)—graphical design, visual-

isation and simulation;

• Charlie (Heiner et al. 2015)—structural and qualitative

analysis.

If you want to reproduce one of our examples or try your

own ones, please follow these steps.

1. Write with your preferred text editor a CANDL

specification. Start from the template provided, and

adjust

• the definition of constants in the group block

according to the literalsðInÞ of your DSD graph,

see Definition 1, and the input values;

• the colour set Label to include literalsðInÞ;
• the colour function Positions to define all vertices

of your DSD graph.

That’s it!

2. This CANDL specification can be processed by Marcie

• to determine the leak transitions, categorised into

short/medium/long distance transitions:

• to compute the state space, if possible, to determine

dead states;

• for any stochastic analysis as described in

Sect. 4.2.

3. Alternatively, unfold the CANDL specification with

to obtain an ANDL file. This step is only mandatory if one

wants to employ Charlie.

4. This ANDL file can be processed by our tools. Use

• Sooopy—to obtain a graphical representation of the

unfolded net: ! file ! import

• Marcie—to determine the leak transitions, cate-

gorised into short/medium/long distance transi-

tions:

Remark The Petri net provided as andl file has to be

obtained by unfolding a coloured SPN following

our template.

• Charlie—for structural analysis;

• Marcie—to compute the state space, if possible, to

determine the dead states;

• Marcie—for any stochastic analysis as described in

Sect. 4.2.

Please see Marcie’s Manual for more details (Schwarick

et al. 2016).

Coloured SPN: CANDL specification

For reasons of completeness we provide a graphical rep-

resentation of the coloured SPN template, made by

reading the CANDL code into Snoopy; see Fig. 12. Many

details are hidden in the graphics; the following CANDL

code provides all details. See the Marcie manual (Sch-

warick et al. 2016) for a formal definition of the CANDL

syntax.
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Generated SPN: leakage transitions

Fig. 12 Graphical representation of the coloured SPN; many details not shown, e.g., arc inscriptions, initial marking, transition rates; see

CANDL code for all details
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Generated SPN: ANDL specification

Generated SPN: graphics

The graphical representations shown in Figs. 13 and 14

take advantage of a special feature supported by Snoopy

allowing for hierarchical Petri net design where macro

transitions (represented by two centric squares) stand for

subnets. Here we use these transitions to hide the details of

the Petri net representation for an undirected step according

to the ‘‘burnt-bridges’’ scenario, see Fig. 3b.
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