77 research outputs found

    Leaf yellowing of the wheat cultivar Mace in the absence of yellowspot disease

    Get PDF
    The wheat variety Mace is currently dominating the southern wheat growing regions of Australia. It is high yielding in most environments and resistant to many diseases including yellow spot (also known as tan spot). However, observations of foliar yellowing of Mace have recently been reported in the field. This has raised concerns over a possible breakdown of resistance to yellow spot, which is caused by the necrotrophic fungal pathogen Pyrenophora triticirepentis. West Australian field samples of yellowing Mace leaves were evaluated for P. triticirepentis infection, and this pathogen was determined to be absent. Instead, Alternaria spp. were isolated from the wheat leaves. Pathogenicity assays showed that the recovered Alternaria spp. were unable to cause disease symptoms on Mace. Furthermore, spontaneous foliar lesions were observed in Mace grown in the absence of pathogens. It is therefore likely that such yellowing is a physiological trait, which will not respond to fungicide application. A marginal impact on yield cannot be excluded

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission.

    Get PDF
    Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this 'cloud of diversity' is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.Thanks to Dr Alex O’Neill, University of Leeds and Dr Matthew Ellington, Public Health England for provision of RN4220 and RN4200mutS. We thank the core sequencing and informatics team at the Wellcome Trust Sanger Institute for sequencing of the isolates described in this study. This work was supported by a Medical Research Council Partnership grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine, University of Cambridge (S.J.P.), the Moredun Research Institute, and the Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support from the NIHR Cambridge Biomedical Research Centre. M.T.G.H., S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051. G.G.R.M. was funded by an MRC studentship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms756

    Motor Cortex Representation of the Upper-Limb in Individuals Born without a Hand

    Get PDF
    The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex

    Retroviral matrix and lipids, the intimate interaction

    Get PDF
    Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research

    Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41

    Get PDF
    Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis

    Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    Get PDF
    International audienceBACKGROUND: The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS: Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE: LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration

    Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells

    Get PDF
    How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference

    HIV Replication Enhances Production of Free Fatty Acids, Low Density Lipoproteins and Many Key Proteins Involved in Lipid Metabolism: A Proteomics Study

    Get PDF
    BACKGROUND: HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. RESULTS: Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. CONCLUSIONS: We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002-0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways
    • …
    corecore