964 research outputs found

    Balance of IL-10 and Interferon-γ plasma levels in human visceral leishmaniasis: Implications in the pathogenesis

    Get PDF
    BACKGROUND: Leishmaniasis remains a serious public health problem in several parts of the developing world. Effective prophylactic measurements are hampered by imprecise comprehension of different aspects of the disease, including its immunoregulation. A better comprehension of immunoregulation in human VL may be useful both for designing and evaluating immunoprophylaxis. METHODS: To explore immunoregulatory mechanisms, 20 visceral leishmaniasis (VL) patients were evaluated during active disease and at different periods up to one year after treatment determining their plasma cytokine levels, clinical parameters (palpable spleen and liver) and antibody levels. RESULTS: Elevated plasma levels of IFN-γ and of IL-12 p40 were observed during active disease, significantly decreasing after treatment whereas in vitro Leishmania antigen-stimulated IFN-γ production by PBMC exhibited an inverse pattern being low during disease and increasing steadily thereafter. Absence of IFN-γ activity is a hallmark of VL. The main candidate for blunting IFN-γ activity is IL-10, a cytokine highly elevated in plasma with sharp decrease after treatment. Activity of IL-10 is inferred by high levels of anti-Leishmania specific IgG1 and IgG3. TGF-β had elevated total, but not of active, levels lessening the likelihood of being the IFN-γ counterpart. Spleen or liver size presented a steady decrease but return to normal values at only 120 days after treatment. Anti-Leishmania IgG (total and subclasses) levels and DTH or Leishmania-stimulated lymphocyte proliferation conversion to positive also present a slow decrease after treatment. IL-6 plasma levels were elevated in only a few patients. CONCLUSION: Taken together our results suggest that IFN-γ and IL-10 are the molecules most likely involved in determining fate of disease. After treatment, there is a long delay before the immune profile returns to normal what precludes using plasma cytokine levels as criteria of cure as simpler clinical evaluations, as a palpable spleen or liver, can be used

    Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresposiveness by inhibiting UPR transducers

    Full text link
    © 2019 American Society for Clinical Investigation. Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPRassociated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl β-muricholic acid (AβM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AβM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs

    Interprofessional communication with hospitalist and consultant physicians in general internal medicine : a qualitative study

    Get PDF
    This study helps to improve our understanding of the collaborative environment in GIM, comparing the communication styles and strategies of hospitalist and consultant physicians, as well as the experiences of providers working with them. The implications of this research are globally important for understanding how to create opportunities for physicians and their colleagues to meaningfully and consistently participate in interprofessional communication which has been shown to improve patient, provider, and organizational outcomes

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Fusion of Color Doppler and Magnetic Resonance Images of the Heart

    Get PDF
    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound)

    Determining Material Response for Polyvinyl Butyral (PVB) in Blast Loading Situations

    Get PDF
    Protecting structures from the effect of blast loads requires the careful design of all building components. In this context, the mechanical properties of Polyvinyl Butyral (PVB) are of interest to designers as the membrane behaviour will affect the performance of laminated glass glazing when loaded by explosion pressure waves. This polymer behaves in a complex manner and is difficult to model over the wide range of strain rates relevant to blast analysis. In this study, data from experimental tests conducted at strain rates from 0.01 s−1 to 400 s−1 were used to develop material models accounting for the rate dependency of the material. Firstly, two models were derived assuming Prony series formulations. A reduced polynomial spring and a spring derived from the model proposed by Hoo Fatt and Ouyang were used. Two fits were produced for each of these models, one for low rate cases, up to 8 s−1, and one for high rate cases, from 20 s−1. Afterwards, a single model representing all rates was produced using a finite deformation viscoelastic model. This assumed two hyperelastic springs in parallel, one of which was in series with a non-linear damper. The results were compared with the experimental results, assessing the quality of the fits in the strain range of interest for blast loading situations. This should provide designers with the information to choose between the available models depending on their design needs

    Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review

    Get PDF
    Background: Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p> Methods/Principal Findings: We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p> Conclusions/Significance: C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p&gt
    corecore