32 research outputs found

    Number Concentrations and Modal Structure of Indoor/Outdoor Fine Particles in Four European Cities

    Get PDF
    Indoor/outdoor aerosol size distribution was measured in four European cities (Oslo-Norway, Prague-Czech Republic, Milan-Italy and Athens-Greece) during 2002 in order to examine the differences in the characteristics of the indoor/outdoor modal structure and to evaluate the effect of indoor sources to the aerosol size distributions. All the measurement sites were naturally ventilated and were occupied during the campaigns by permanent residents or for certain time periods by the technical staff responsible for the instrumentation. Outdoor particle number (PN) concentrations presented the higher values in Milan and Athens (median values 1.4 x 10(4) # cm(-3) and 2.9 x 10(4) # cm(-3) respectively) as a result of elevated outdoor emissions and led to correspondingly higher indoor values compared to Oslo and Prague. In absence of indoor activities, the indoor concentrations followed the fluctuations of the outdoor concentrations in all the measurement sites. Indoor activities (cooking, smoking, etc.) resulted in elevated indoor PN concentrations (maximum values ranging between 1.7 x 10(5) # cm(-3) and 3.2 x 10(5) # cm(-3)) and to I/O ratios higher than one. The I/O ratios were size dependant and for periods without indoor activities, they presented the lowest values for particles <50 nm (0.51 +/- 0.15) and the ratios increased with fine particle size (0.79 +/- 0.12 for particles between 100-200 nm). The analysis of the modal structure showed that the indoor aerosol size distribution characteristics differ from the outdoors under the effect of indoor sources. The percentage of unimodal size distributions increased during indoor emissions, compared to periods without indoor sources, along with the number concentration of Aitken mode particles, indicating emissions in specific size ranges according to the type of the indoor source.Peer reviewe

    The risks of acute exposure to black carbon in Southern Europe: results from the MED-PARTICLES project

    Get PDF
    While several studies have reported associations of daily exposures to PM2.5 (particles less than 2.5 µm) with mortality, few studies have examined the impact of its constituents such as black carbon (BC), which is also a significant contributor to global climate change. Methods: We assessed the association between daily concentrations of BC and total, cardiovascular and respiratory mortality in two southern Mediterranean cities. Daily averages of BC were collected for 2 years in Barcelona, Spain and Athens, Greece. We used case-crossover analysis and examined single and cumulative lags up to 3 days. Results: We observed associations between BC and all mortality measures. For a 3-day moving average, cardiovascular mortality increased by 4.5% (95% CI 0.7 to 8.5) and 2.0% (95% CI 0 to 4.0) for an interquartile change in BC in Athens and Barcelona, respectively. Considerably higher effects for respiratory mortality and for those above age 65 were observed. In addition, BC exhibited much greater toxicity per microgram than generic PM2.5. Conclusions: Our findings suggest that BC, derived in western industrialised nations primarily from diesel engines and biomass burning, poses a significant burden to public health, particularly in European cities with high-traffic density.Peer ReviewedPostprint (published version

    Results of the Ambient Air Experiments during the EUSAAR 2009 Absorption Photometer Workshop.

    Get PDF
    International Aerosol Conference 2010. Helsinki, Finland, August 29-September 3.Develop methodologies to compensate for apparent absorption caused by scattering dueto the use of filter matrix support

    A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Get PDF
    Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC), in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011) and Equivalent BC (EBC) (1989–2011) from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow pattern

    Black carbon and ionic species in the Arctic aerosol

    No full text
    Previous studies on Arctic aerosol characteristics have shown a pronounced winter-spring maximum and summer-autumn minimum in aerosol concentration. Measurements of black carbon concentration in the atmospheric aerosol were obtained by means of an aethalometer at the Zeppelinfjellet station Ny-Ålesund, Svalbard. Simultaneous 24 hour measurements of the concentration of key aerosol species like sulphate, ammonium and nitrate together with sulphur dioxide, conducted by NILU are presented and discussed in order to evaluate the transport processes governing their presence in the High Arctic. Large variations are seen to be superimposed on an overall trend that apparently exhibits higher values in winter than in late summer. Back trajectory analysis of the airmasses arriving at Zeppelin station, reveals that enhanced concentrations observed for black carbon and sulphate are associated with long range transport of polluted air from Eurasia. Black carbon, sulphur dioxide and sulphate concentrations are correlated well. Nitrate and ammonium display a rather poor association with the above species and between each other

    Heterogeneous nucleation on rough surfaces: implications to atmospheric aerosols

    No full text
    Summarization: The effect of the surface roughness of solid atmospheric aerosol particles on their heterogeneous nucleation capability has been examined using the concept of “self-affine” rough surfaces. The surface roughness has a great influence on the contact angle between the particle surface and the nucleating liquid droplets. Roughness enhances wetting and the rate of heterogeneous nucleation from the vapor to the liquid phase. The paper furthermore discusses the considerable influence of the surface roughness on the physico-chemical characteristics of atmospheric insoluble aerosol particles.Παρουσιάστηκε στο: Atmospheric Researc
    corecore