2,081 research outputs found
Recommended from our members
Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli
Self-rated health in middle-aged and elderly Chinese : distribution, determinants and associations with cardio-metabolic risk factors
Background: Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese.
Methods: Survey of 1,458 men and 1,831 women aged 50 to 70 years, conducted in one urban and two rural areas of Beijing and Shanghai in 2005. SRH status was measured and categorized as good (very good and good) vs. not good (fair, poor and very poor). Determinants of SRH and associations with biomarkers of cardio-metabolic diseases were evaluated using logistic regression.
Results: Thirty two percent of participants reported good SRH. Males and rural residents tended to report good SRH. After adjusting for potential confounders, residence, physical activity, employment status, sleep quality and presence of diabetes, cardiovascular disease, and depression were the main determinants of SRH. Those free from cardiovascular disease (OR 3.68; 95%CI 2.39; 5.66), rural residents (OR 1.89; 95% CI 1.47; 2.43), non-depressed participants (OR 2.50; 95% CI 1.67; 3.73) and those with good sleep quality (OR 2.95; 95% CI 2.22; 3.91) had almost twice or over the chance of reporting good SRH compared to their counterparts. There were significant associations -and trend- between SRH and levels of inflammatory markers, insulin levels and insulin resistance.
Conclusion: Only one third of middle-aged and elderly Chinese assessed their health status as good or very good. Although further longitudinal studies are required to confirm our findings, interventions targeting social inequalities, lifestyle patterns might not only contribute to prevent chronic morbidity but as well to improve populations' perceived health
Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats
This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets
A Cellular Pathway Involved in Clara Cell to Alveolar Type II Cell Differentiation after Severe Lung Injury
Regeneration of alveolar epithelia following severe pulmonary damage is critical for lung function. We and others have previously shown that Scgb1a1-expressing cells, most likely Clara cells, can give rise to newly generated alveolar type 2 cells (AT2s) in response to severe lung damage induced by either influenza virus infection or bleomycin treatment. In this study, we have investigated cellular pathway underlying the Clara cell to AT2 differentiation. We show that the initial intermediates are bronchiolar epithelial cells that exhibit Clara cell morphology and express Clara cell marker, Scgb1a1, as well as the AT2 cell marker, pro-surfactant protein C (pro-SPC). These cells, referred to as pro-SPC[superscript +] bronchiolar epithelial cells (or SBECs), gradually lose Scgb1a1 expression and give rise to pro-SPC[superscript +] cells in the ring structures in the damaged parenchyma, which appear to differentiate into AT2s via a process sharing some features with that observed during alveolar epithelial development in the embryonic lung. These findings suggest that SBECs are intermediates of Clara cell to AT2 differentiation during the repair of alveolar epithelia following severe pulmonary injury.Singapore-MIT Alliance for Research and Technology Center. Infectious Disease Research Grou
Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis
Hypoxia-inducible factor (HIF-1) is the key transcription regulator for multiple angiogenic factors and is an appealing target. Ginsenoside-Rg1, a nontoxic saponin isolated from the rhizome of Panax ginseng, exhibits potent proangiogenic activity and has the potential to be developed as a new angiotherapeutic agent. However, the mechanisms by which Rg1 promotes angiogenesis are not fully understood. Here, we show that Rg1 is an effective stimulator of HIF-1α under normal cellular oxygen conditions in human umbilical vein endothelial cells. HIF-1α steady-state mRNA was not affected by Rg1. Rather, HIF-1α protein synthesis was stimulated by Rg1. This effect was associated with constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt and its effector p70 S6 kinase (p70S6K), but not extracellular-signal regulated kinase 1/2. We further revealed that HIF-1α induction triggered the expression of target genes, including vascular endothelial growth factor (VEGF). The use of small molecule inhibitors LY294002 or rapamycin to inhibit PI3K/Akt and p70S6K activities, respectively, resulted in diminished HIF-1α activation and subsequent VEGF expression. RNA interference-mediated knockdown of HIF-1α suppressed Rg1-induced VEGF synthesis and angiogenic tube formation, confirming that the effect was HIF-1α specific. Similarly, the angiogenic phenotype could be reversed by inhibition of PI3K/Akt and p70S6K. These results define a hypoxia-independent activation of HIF-1α, uncovering a novel mechanism for Rg1 that could play a major role in angiogenesis and vascular remodeling
In silico analysis and verification of S100 gene expression in gastric cancer
<p>Abstract</p> <p>Background</p> <p>The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca<sup>2+ </sup>binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet.</p> <p>Methods</p> <p>Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR.</p> <p>Results</p> <p>At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer.</p
Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
The role of clathrin in post-golgi trafficking in toxoplasma gondii
Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle
- …