646 research outputs found
Consequences of sex change for effective population size.
Sequential hermaphroditism, where males change to females (protandry) or the reverse (protogyny), is widespread in animals and plants, and can be an evolutionarily stable strategy (ESS) if fecundity rises faster with age in the second sex. Sequential hermaphrodites also generally have sex ratios skewed towards the initial sex, and standard theory based on fixed sexes indicates that this should reduce effective population size ( Ne) and increase the deleterious effects of genetic drift. We show that despite having skewed sex ratios, populations that change sex at the ESS age do not have reduced Ne compared with fixed-sex populations with an even sex ratio. This implies that the ability of individuals to operate as both male and female allows the population to avoid some evolutionary constraints imposed by fixed sexes. Furthermore, Ne would be maximized if sex change occurred at a different (generally earlier) age than is selected for at the individual level, which suggests a potential conflict between individual and group selection. We also develop a novel method to quantify the strength of selection for sex reversal
Changing sex at the same relative body size
Sex change occurs in a variety of animals,
including fish, echinoderms,crustaceans, molluscs and polychaete worms. Here we show that the relative timing
of sex change is surprisingly invariant
across all animals: 91–97% of the variation
in size at sex change across species can be
explained by the simple rule that individuals
change sex when they reach 72% of their
maximum size. This suggests that there is a
fundamental similarity across all animals,
from a 2-mm-long crustacean to a 1.5-mlong
fish in the underlying forces
that select for sex change
Host Suitability of a Gregarious Parasitoid on Beetle Hosts: Flexibility between Fitness of Adult and Offspring
Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages: larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S. harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with encountering prior host quality
Industrial energy use and the human life history
The demographic rates of most organisms are supported by the consumption of food energy, which is used to produce new biomass and fuel physiological processes. Unlike other species, modern humans use ‘extra-metabolic' energy sources acquired independent of physiology, which also influence demographics. We ask whether the amount of extra-metabolic energy added to the energy budget affects demographic and life history traits in a predictable way. Currently it is not known how human demographics respond to energy use, and we characterize this response using an allometric approach. All of the human life history traits we examine are significant functions of per capita energy use across industrialized populations. We find a continuum of traits from those that respond strongly to the amount of extra-metabolic energy used, to those that respond with shallow slopes. We also show that the differences in plasticity across traits can drive the net reproductive rate to below-replacement levels
Mutation Accumulation May Be a Minor Force in Shaping Life History Traits
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages
Recommended from our members
Equal fitness paradigm explained by a trade-off between generation time and energy production rate
Most plant, animal and microbial species of widely varying body size and lifestyle are nearly equally fit as evidenced by their coexistence and persistence through millions of years. All organisms compete for a limited supply of organic chemical energy, derived mostly from photosynthesis, to invest in the two components of fitness: survival and production. All organisms are mortal because molecular and cellular damage accumulates over the lifetime; life persists only because parents produce offspring. We call this the equal fitness paradigm. The equal fitness paradigm occurs because: (1) there is a trade-off between generation time and productive power, which have equal-but-opposite scalings with body size and temperature; smaller and warmer organisms have shorter lifespans but produce biomass at higher rates than larger and colder organisms; (2) the energy content of biomass is essentially constant, ~22.4 kJ g−1 dry body weight; and (3) the fraction of biomass production incorporated into surviving offspring is also roughly constant, ~10–50%. As organisms transmit approximately the same quantity of energy per gram to offspring in the next generation, no species has an inherent lasting advantage in the struggle for existence. The equal fitness paradigm emphasizes the central importance of energy, biological scaling relations and power–time trade-offs in life history, ecology and evolution
Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?
As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies
Remarkable Rates of Lightning Strike Mortality in Malawi
Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential lightning strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from lightning was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that lightning constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area
- …