925 research outputs found

    Lunar resources: a review

    Get PDF
    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth’s closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which are found to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industrial capability within the Earth-Moon system. In this way, gradually increasing access to lunar resources may help ‘bootstrap’ a space-based economy from which the world economy, and possibly also the world’s environment, will ultimately benefit

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules

    Get PDF
    Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces

    Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view

    Get PDF
    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively

    A phase II study of paclitaxel and capecitabine as a first-line combination chemotherapy for advanced gastric cancer

    Get PDF
    Paclitaxel and capecitabine, which have distinct mechanisms of action and toxicity profiles, have each shown high activity as single agents in gastric cancer. Synergistic interaction between these two drugs was suggested by taxane-induced upregulation of thymidine phosphorylase. We, therefore, evaluated the antitumour activity and toxicities of paclitaxel and capecitabine as first-line therapy in patients with advanced gastric cancer (AGC). Patients with histologically confirmed unresectable or metastatic AGC were treated with capecitabine 825 mg m−2 p.o. twice daily on days 1–14 and paclitaxel 175 mg m−2 i.v. on day 1 every 3 weeks until disease progression or unacceptable toxicities. Between June 2002 and May 2004, 45 patients, of median age 57 years (range=38–73 years), were treated with the combination of capecitabine and paclitaxel. After a median 6 cycles (range=1–9 cycles) of chemotherapy, 43 were evaluable for toxicity and response. A total of 2 patients showed complete response and 20 showed partial response making the overall response rate 48.9% (95% CI=30.3–63.5%). After a median follow-up of 42.2 months (range=31.2–54.3 months), median time to progression was 5.6 months (95% CI=3.9–7.2 months) and median overall survival was 11.3 months (95% CI=8.1–14.4 months). Grade 3 or 4 adverse events include neutropaenia (46.5% of patients), hand–foot syndrome (9.3%), arthralgia (9.3%), and asthenia (4.7%). There was no neutropaenic fever or treatment-related deaths. Paclitaxel and capecitabine combination chemotherapy was active and highly tolerable as a first-line therapy for AGC

    Development of an in-vivo active reversible butyrylcholinesterase inhibitor

    Get PDF
    Alzheimer’s disease (AD) is characterized by severe basal forebrain cholinergic deficit, which results in progressive and chronic deterioration of memory and cognitive functions. Similar to acetylcholinesterase, butyrylcholinesterase (BChE) contributes to the termination of cholinergic neurotransmission. Its enzymatic activity increases with the disease progression, thus classifying BChE as a viable therapeutic target in advanced AD. Potent, selective and reversible human BChE inhibitors were developed. The solved crystal structure of human BChE in complex with the most potent inhibitor reveals its binding mode and provides the molecular basis of its low nanomolar potency. Additionally, this compound is noncytotoxic and has neuroprotective properties. Furthermore, this inhibitor moderately crosses the blood-brain barrier and improves memory, cognitive functions and learning abilities of mice in a model of the cholinergic deficit that characterizes AD, without producing acute cholinergic adverse effects. Our study provides an advanced lead compound for developing drugs for alleviating symptoms caused by cholinergic hypofunction in advanced AD
    corecore