20,682 research outputs found

    Micromagnetic simulations of sweep-rate dependent coercivity in perpendicular recording media

    Full text link
    The results of micromagnetic simulations are presented which examine the impact of thermal fluctuations on sweep rate dependent coercivities of both single-layer and exchange-coupled-composite (ECC) perpendicular magnetic recording media. M-H loops are calculated at four temperatures and sweep rates spanning five decades with fields applied normal to the plane and at 45 degrees. The impact of interactions between grains is evaluated. The results indicate a significantly weaker sweep-rate dependence for ECC media suggesting more robustness to long-term thermal effects. Fitting the modeled results to Sharrock-like scaling proposed by Feng and Visscher [J. Appl. Phys. 95, 7043 (2004)] is successful only in the case of single-layer media with the field normal to the plane.Comment: 7 pages, 14 figure

    Iterative maximum-likelihood reconstruction in quantum homodyne tomography

    Full text link
    I propose an iterative expectation maximization algorithm for reconstructing a quantum optical ensemble from a set of balanced homodyne measurements performed on an optical state. The algorithm applies directly to the acquired data, bypassing the intermediate step of calculating marginal distributions. The advantages of the new method are made manifest by comparing it with the traditional inverse Radon transformation technique

    Results from Shell Model Monte Carlo Studies

    Get PDF
    We review results obtained using Shell Model Monte Carlo (SMMC) techniques. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. After a brief review of the methods, we discuss a variety of nuclear physics applications. These include studies of the ground-state properties of pf-shell nuclei, Gamow-Teller strength distributions, thermal and rotational pairing properties of nuclei near N=Z, γ\gamma-soft nuclei, and ββ\beta\beta-decay in ^{76}Ge. Several other illustrative calculations are also reviewed. Finally, we discuss prospects for further progress in SMMC and related calculations

    Repeated temperature logs from the sites of the Czech, Slovenian and Portuguese borehole climate stations

    No full text
    International audienceTwo borehole climate stations were established in Slovenia and Portugal within a joint Czech-Slovenian-Portuguese project in the years 2003?2005. They completed the older Czech station, which has been operating since the year 1994. We report here on the repeated temperature logs carried out within 6 boreholes at the sites of the stations and their surroundings within a time span of 8?20 years (1985?2005). The repeated logs revealed subsurface warming in all the boreholes amounting to 0.2?0.6°C below the depth of the annual run at 20 m. The depth of the Czech borehole (140 m) and the Portuguese borehole (180 m) was sufficient enough for a reconstruction of the ground surface temperature (GST) history of the last 150?200 years and their comparison with the surface air temperature (SAT) series measured in Prague (since 1771) and Lisbon (1856), respectively. The reconstructed histories reproduce reasonably well the amplitude of the recent warming, 1?1.5°C above the long-term mean. The depth of all four Slovenian boreholes, 100 m, did not allow the inversion, but it was possible to apply it to a deep borehole 5 km apart from the Slovenian station. The obtained GST history was compared with SAT series from Ljubljana (since 1851). Alternatively, a compatibility of the observed temporal changes of subsurface temperature with surface air temperature series measured in Prague, Ljubljana and Lisbon was checked by comparing differences of the repeated logs with the synthetic ones. These were calculated by using the SAT series as a forcing function at a surface of transient geothermal models of the borehole sites. A degree of agreement varies from very well to rather poor, probably depending on unaccounted site specific factors, which are to be specified by a long-term temperature monitoring at the established stations

    Network-wide Configuration Synthesis

    Full text link
    Computer networks are hard to manage. Given a set of high-level requirements (e.g., reachability, security), operators have to manually figure out the individual configuration of potentially hundreds of devices running complex distributed protocols so that they, collectively, compute a compatible forwarding state. Not surprisingly, operators often make mistakes which lead to downtimes. To address this problem, we present a novel synthesis approach that automatically computes correct network configurations that comply with the operator's requirements. We capture the behavior of existing routers along with the distributed protocols they run in stratified Datalog. Our key insight is to reduce the problem of finding correct input configurations to the task of synthesizing inputs for a stratified Datalog program. To solve this synthesis task, we introduce a new algorithm that synthesizes inputs for stratified Datalog programs. This algorithm is applicable beyond the domain of networks. We leverage our synthesis algorithm to construct the first network-wide configuration synthesis system, called SyNET, that support multiple interacting routing protocols (OSPF and BGP) and static routes. We show that our system is practical and can infer correct input configurations, in a reasonable amount time, for networks of realistic size (> 50 routers) that forward packets for multiple traffic classes.Comment: 24 Pages, short version published in CAV 201

    An action principle for the quantization of parametric theories and nonlinear quantum cosmology

    Full text link
    By parametrizing the action integral for the standard Schrodinger equation we present a derivation of the recently proposed method for quantizing a parametrized theory. The reformulation suggests a natural extension from conventional to nonlinear quantum mechanics. This generalization enables a unitary description of the quantum evolution for a broad class of constrained Hamiltonian systems with a nonlinear kinematic structure. In particular, the new theory is applicable to the quantization of cosmological models where a chosen gravitational degree of freedom acts as geometric time. This is demonstrated explicitly using three cosmological models: the Friedmann universe with a massless scalar field and Bianchi type I and IX models. Based on these investigations, the prospect of further developing the proposed quantization scheme in the context of quantum gravity is discussed.Comment: 14 page

    Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

    Full text link
    We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with low (∼1\sim 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we compute the distributions of events versus neutrino energy EνE_\nu and zenith angle θz\theta_z, and study their dependence on yet unknown neutrino parameters. The (Eν−θz)(E_\nu - \theta_z) regions are identified where the distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measurements of the neutrino parameters and explore dependence of this significance on the accuracy of reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high confidence level. We find that the hierarchy can be identified at 3σ3\sigma -- 10σ10\sigma level (depending on the reconstruction accuracies) after 5 years of PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte

    Hybridising heuristics within an estimation distribution algorithm for examination timetabling

    Get PDF
    This paper presents a hybrid hyper-heuristic approach based on estimation distribution algorithms. The main motivation is to raise the level of generality for search methodologies. The objective of the hyper-heuristic is to produce solutions of acceptable quality for a number of optimisation problems. In this work, we demonstrate the generality through experimental results for different variants of exam timetabling problems. The hyper-heuristic represents an automated constructive method that searches for heuristic choices from a given set of low-level heuristics based only on non-domain-specific knowledge. The high-level search methodology is based on a simple estimation distribution algorithm. It is capable of guiding the search to select appropriate heuristics in different problem solving situations. The probability distribution of low-level heuristics at different stages of solution construction can be used to measure their effectiveness and possibly help to facilitate more intelligent hyper-heuristic search methods
    • …
    corecore