19 research outputs found

    Cigarette Smoking and Effects on Hormone Function in Premenopausal Women

    Get PDF
    Cigarette smoke contains compounds that are suspected to cause reproductive damage and possibly affect hormone activity; therefore, we examined hormone metabolite patterns in relation to validated smoking status. We previously conducted a prospective study of women of reproductive age (n = 403) recruited from a large health maintenance organization, who collected urine daily during an average of three to four menstrual cycles. Data on covariates and daily smoking habits were obtained from a baseline interview and daily diary, and smoking status was validated by cotinine assay. Urinary metabolite levels of estrogen and progesterone were measured daily throughout the cycles. For the present study, we measured urinary levels of the pituitary hormone follicle-stimulating hormone (FSH) in a subset of about 300 menstrual cycles, selected by smoking status, with the time of transition between two cycles being of primary interest. Compared with nonsmokers, moderate to heavy smokers (≥ 10 cigarettes/day) had baseline levels (e.g., early follicular phase) of both steroid metabolites that were 25–35% higher, and heavy smokers (≥ 20 cigarettes/day) had lower luteal-phase progesterone metabolite levels. The mean daily urinary FSH levels around the cycle transition were increased at least 30–35% with moderate smoking, even after adjustment. These patterns suggest that chemicals in tobacco smoke alter endocrine function, perhaps at the level of the ovary, which in turn effects release of the pituitary hormones. This endocrine disruption likely contributes to the reported associations of smoking with adverse reproductive outcomes, including menstrual dysfunction, infertility, and earlier menopause

    Body composition impacts appetite regulation in middle childhood. A prospective study of Norwegian community children

    Get PDF
    Background Research suggests a role for both fat mass and muscle mass in appetite regulation, but the longitudinal relationships between them have not yet been examined in children. The present study therefore aimed to explore the prospective relationships between fat mass, muscle mass and the appetitive traits food responsiveness and satiety responsiveness in middle childhood. Methods Food responsiveness and satiety responsiveness were measured using the parent-reported Children’s Eating Behavior Questionnaire in a representative sample of Norwegian 6 year olds, followed up at 8 and 10 years of age (n = 807). Body composition was measured by bioelectrical impedance. Results Applying a structural equation modeling framework we found that higher fat mass predicted greater increases in food responsiveness over time, whereas greater muscle mass predicted decreases in satiety responsiveness. This pattern was consistent both from ages 6 to 8 and from ages 8 to 10 years. Conclusions Our study is the first to reveal that fat mass and muscle mass predict distinct changes in different appetitive traits over time. Replication of findings in non-European populations are needed, as are studies of children in other age groups. Future studies should also aim to reveal the underlying mechanisms

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management

    A functional classification of herbaceous hedgerow vegetation for setting restoration objectives

    Get PDF
    Hedgerows are valuable habitats for biodiversity in farmed landscapes. The herbaceous vegetation at the hedge base is an important component of this habitat but its condition in Britain has deteriorated due to a combination of nutrient and pesticide contamination, and inappropriate management or neglect. The condition of herbaceous hedgerow vegetation is included in policy targets for biodiversity conservation, so a strategy is required for its restoration. This vegetation can be highly variable, so a classification of the main types is required to set realistic objectives. Vegetation classifications based on species’ functional characteristics can have more general application that those based on species identity. Using existing datasets from a countrywide survey, a functional classification of herbaceous vegetation from hedgerows in Britain was developed. Cluster analysis of vegetation plots, based on attributes of the species present, produced thirteen vegetation types in six broad groups. These were differentiated by the association of the component species with woodland, grassland or arable habitats and by gradients of soil nutrient status and pH, light availability, disturbance and grazing tolerance. By using species’ ecological characteristics as a basis for the classification, the condition of vegetation can be established and the prevailing environment predicted. From this information, a realistic strategy for restoration can then be determined

    The cosmopolitan moss Bryum argenteum in Antarctica: Recent colonisation or in situ survival?

    Get PDF
    Since the onset of glaciation following the Oligocene (30–28 Ma), the prevalence of increasingly cold conditions has shaped the evolution of the Antarctic biota. Two hypotheses, postglacial recruitment from extra-regional locations and in situ persistence, have been proposed to explain the biogeography of the contemporary species-poor terrestrial Antarctic biota. Bryophytes, which form a major group of the Antarctic flora, exhibit a strong, inherent ability to survive cold conditions but also have high long-distance dispersal capacities, which are compatible with both hypotheses. Here, we test these hypotheses by means of population genetic and phylogeographic analyses of the cosmopolitan moss Bryum argenteum. We find evidence for at least three independent colonisation events of the species in Antarctica. Ancestral area reconstruction coupled with molecular dating suggests colonisation times of the different Antarctic clades ranging from four million years for the oldest lineage to half a million years for the youngest lineage. This suggests multiple colonisation events of Antarctica by this species during several glacial cycles within the Pleistocene, Pliocene and possibly late Miocene. This is the first study to demonstrate in situ persistence of bryophytes in Antarctica throughout previous glaciations
    corecore