98 research outputs found

    Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach

    Get PDF
    The bacterial sliding clamp (SC), also known as the DNA polymerase III β subunit, is an emerging antibacterial target that plays a central role in DNA replication, serving as a protein-protein interaction hub with a common binding pocket to recognize linear motifs in the partner proteins. Here, fragment-based screening using X-ray crystallography produced four hits bound in the linear-motif-binding pocket of the Escherichia coli SC. Compounds structurally related to the hits were identified that inhibited the E. coli SC and SC-mediated DNA replication in vitro. A tetrahydrocarbazole derivative emerged as a promising lead whose methyl and ethyl ester prodrug forms showed minimum inhibitory concentrations in the range of 21-43 μg/mL against representative Gram-negative and Gram-positive bacteria species. The work demonstrates the utility of a fragment-based approach for identifying bacterial sliding clamp inhibitors as lead compounds with broad-spectrum antibacterial activity. © 2014 American Chemical Society

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    Beyond in-phase and anti-phase coordination in a model of joint action

    Get PDF
    In 1985, Haken, Kelso and Bunz proposed a system of coupled nonlinear oscillators as a model of rhythmic movement patterns in human bimanual coordination. Since then, the Haken–Kelso–Bunz (HKB) model has become a modelling paradigm applied extensively in all areas of movement science, including interpersonal motor coordination. However, all previous studies have followed a line of analysis based on slowly varying amplitudes and rotating wave approximations. These approximations lead to a reduced system, consisting of a single differential equation representing the evolution of the relative phase of the two coupled oscillators: the HKB model of the relative phase. Here we take a different approach and systematically investigate the behaviour of the HKB model in the full four-dimensional state space and for general coupling strengths. We perform detailed numerical bifurcation analyses and reveal that the HKB model supports previously unreported dynamical regimes as well as bistability between a variety of coordination patterns. Furthermore, we identify the stability boundaries of distinct coordination regimes in the model and discuss the applicability of our findings to interpersonal coordination and other joint action tasks

    Computational Modelling of Genome-Side Transcription Assembly Networks Using a Fluidics Analogy

    Get PDF
    Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets

    Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements

    Get PDF
    International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements

    Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector

    Get PDF
    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge’s flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods

    No transfer of calibration between action and perception in learning a golf putting task

    Get PDF
    We assessed calibration of perception and action in the context of a golf putting task. Previous research has shown that right-handed novice golfers make rightward errors both in the perception of the perfect aiming line from the ball to the hole and in the putting action. Right-handed experts, however, produce accurate putting actions but tend to make leftward errors in perception. In two experiments, we examined whether these skill-related differences in directional error reflect transfer of calibration from action to perception. In the main experiment, three groups of right-handed novice participants followed a pretest, practice, posttest, retention test design. During the tests, directional error for the putting action and the perception of the perfect aiming line were determined. During practice, participants were provided only with verbal outcome feedback about directional error; one group trained perception and the second trained action, whereas the third group did not practice. Practice led to a relatively permanent annihilation of directional error, but these improvements in accuracy were specific to the trained task. Hence, no transfer of calibration occurred between perception and action. The findings are discussed within the two-visual-system model for perception and action, and implications for perceptual learning in action are raised

    Direct detection of dark matter in models with a light Z'

    Full text link
    We discuss the direct detection signatures of dark matter interacting with nuclei via a Z' mediator, focussing on the case where both the dark matter and the ZZ' have mass of a few GeV. Isospin violation (i.e. different couplings to protons and neutrons) arises naturally in this scenario. In particular it is possible to reconcile the preferred parameter regions inferred from the observed DAMA and CoGeNT modulations with the bounds from XENON100, which requires f_n/f_p = -0.7. Moreover, the Z' mediator can also yield a large spin-dependent cross-section which could contribute to the DAMA signal, while the spin-independent cross-section is adequate to explain the CoGeNT signal.Comment: 20 pages, 3 figures. v2: matches published versio

    Distinct Kinetics of Memory B-Cell and Plasma-Cell Responses in Peripheral Blood Following a Blood-Stage Plasmodium chabaudi Infection in Mice

    Get PDF
    B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD− IgM− CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele
    corecore