4,232 research outputs found

    Displaced Higgs production in type III seesaw

    Full text link
    We point out that the type III seesaw mechanism introducing fermion triplets predicts peculiar Higgs boson signatures of displaced vertices with two b jets and one or two charged particles which can be cleanly identified. In a supersymmetric theory, the scalar partner of the fermion triplet contains a neutral dark matter candidate which is almost degenerate with its charged components. A Higgs boson can be produced together with such a dark matter triplet in the cascade decay chain of a strongly produced squark or gluino. When the next lightest supersymmetric particle (NLSP) is bino/wino-like, there appears a Higgs boson associated with two charged tracks of a charged lepton and a heavy charged scalar at a displacement larger than about 1 mm. The corresponding production cross-section is about 0.5 fb for the squark/gluino mass of 1 TeV. In the case of the stau NLSP, it decays mainly to a Higgs boson and a heavy charged scalar whose decay length is larger than 0.1 mm for the stau NLSP mixing with the left-handed stau smaller than 0.3. As this process can have a large cascade production 2\sim 2 pb for the squark/gluino mass 1\sim 1 TeV, one may be able to probe it at the early stage of the LHC experiment.Comment: 10 pages, 5 figure

    Phase diagram and spin-glass phenomena in electron-doped La1-xHfxMnO3 (0.05 ≤ x ≤ 0.3) manganite oxides

    Get PDF
    The effects of tetravalent hafnium doping on the structural, transport, and magnetic properties of polycrystalline La1−xHfxMnO3 (LHMO) (0.05 ≤ x ≤ 0.3) were investigated systematically. LHMO exhibited a typical colossal magnetoresistance effect via the double-exchange between Mn2+ and Mn3+ ions, instead of that between Mn3+ and Mn4+ ions in hole-doped manganites. A phase diagram was obtained for the first time through magnetization and resistance measurements in a broad temperature range. As the Hf concentration varied from x = 0.05 to 0.3, the Curie point and metal-to-insulator transition temperature increased significantly, whereas the magnetization and resistivity decreased remarkably. An abnormal enhancement of the magnetization was observed at about 42 K. It was further confirmed that a second magnetic phase MnO2 in LHMO gives rise to such a phenomenon. The possible causes are discussed in detail. The dynamic magnetic properties of LHMO, including relaxation and aging processes, were studied, demonstrating a spin-glass state at low temperature accompanied by a ferromagnetic phase.published_or_final_versio

    Suppression of photoconductivity by magnetic field in epitaxial manganite thin films

    Get PDF
    The erasure of photoinduced resistance (PR) by the magnetic field was investigated in manganite films. The PR was significantly suppressed when a magnetic field was introduced at low temperature. The decrease (or increase) of PR with increment of magnetic field was observed in ferromagnetic (or paramagnetic) phases of films, respectively. Our results are suggested to be the coaction of two effects under magnetic fields: (i) the reorientation of domains and spin directions of photoexcited carriers and (ii) electrons trapped around oxygen vacancies released and recombined with majority carriers in films. The interplay of the external fields is a good demonstration of the strong coupling between spins and charges in colossal magnetoresistance materials. © 2012 American Institute of Physics.published_or_final_versio

    Genetic markers for antioxidant capacity in a reef-building coral

    Get PDF
    © 2016 The Authors. The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12 latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs

    A current perspective on cancer immune therapy: Step‑by‑step approach to constructing the magic bullet

    Get PDF
    Immunotherapy is the new trend in cancer treatment due to the selectivity, long lasting effects, and demonstrated improved overall survival and tolerance, when compared to patients treated with conventional chemotherapy. Despite these positive results, immunotherapy is still far from becoming the perfect magic bullet to fight cancer, largely due to the facts that immunotherapy is not effective in all patients nor in all cancer types. How and when will immunotherapy overcome these hurdles? In this review we take a step back to walk side by side with the pioneers of immunotherapy in order to understand what steps need to be taken today to make immunotherapy effective across all cancers. While early scientists, such as Coley, elicited an unselective but effective response against cancer, the search for selectivity pushed immunotherapy to the side in favor of drugs focused on targeting cancer cells. Fortunately, the modern era would revive the importance of the immune system in battling cancer by releasing the brakes or checkpoints (anti-CTLA-4 and anti-PD-1/PD-L1) that have been holding the immune system at bay. However, there are still many hurdles to overcome before immunotherapy becomes a universal cancer therapy. For example, we discuss how the redundant and complex nature of the immune system can impede tumor elimination by teeter tottering between different polarization states: one eliciting anti-cancer effects while the other promoting cancer growth and invasion. In addition, we highlight the incapacity of the immune system to choose between a fight or repair action with respect to tumor growth. Finally we combine these concepts to present a new way to think about the immune system and immune tolerance, by introducing two new metaphors, the “push the accelerator” and “repair the car” metaphors, to explain the current limitations associated with cancer immunotherapyThis work was supported by NIH R00 CA154605 and Louisiana Board of Regents LEQSF(2016-17)-RD-C-14 (H.L.M.), a Rámon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (B.S.Jr) and a Clinic and Laboratory Integration Program (CLIP) grant from the Cancer Research Institute, NY (B.S.Jr)

    Attenuation of leukocyte sequestration by selective blockade of PECAM-1 or VCAM-1 in murine endotoxemia

    Get PDF
    Background: Molecular mechanisms regulating leukocyte sequestration into the tissue during endotoxemia and/or sepsis are still poorly understood. This in vivo study investigates the biological role of murine PECAM-1 and VCAM-1 for leukocyte sequestration into the lung, liver and striated skin muscle. Methods: Male BALB/c mice were injected intravenously with murine PECAM-1 IgG chimera or monoclonal antibody (mAb) to VCAM-1 ( 3 mg/kg body weight); controls received equivalent doses of IgG2a ( n = 6 per group). Fifteen minutes thereafter, 2 mg/kg body weight of Salmonella abortus equi endotoxin was injected intravenously. At 24 h after the endotoxin challenge, lungs, livers and striated muscle of skin were analyzed for their myeloperoxidase activity. To monitor intravital leukocyte-endothelial cell interactions, fluorescence videomicroscopy was performed in the skin fold chamber model of the BALB/c mouse at 3, 8 and 24 h after injection of endotoxin. Results: Myeloperoxidase activity at 24 h after the endotoxin challenge in lungs (12,171 +/- 2,357 mU/g tissue), livers ( 2,204 +/- 238 mU/g) and striated muscle of the skin ( 1,161 +/- 110 mU/g) was significantly reduced in both treatment groups as compared to controls, with strongest attenuation in the PECAM-1 IgG treatment group. Arteriolar leukocyte sticking at 3 h after endotoxin (230 +/- 46 cells x mm(-2)) was significantly reduced in both treatment groups. Leukocyte sticking in postcapillary venules at 8 h after endotoxin ( 343 +/- 69 cells/mm(2)) was found reduced only in the VCAM-1-mAb-treated animals ( 215 +/- 53 cells/mm(2)), while it was enhanced in animals treated with PECAM-1 IgG ( 572 +/- 126 cells/mm(2)). Conclusion: These data show that both PECAM-1 and VCAM-1 are involved in endotoxin-induced leukocyte sequestration in the lung, liver and muscle, presumably through interference with arteriolar and/or venular leukocyte sticking. Copyright (C) 2004 S. Karger AG, Basel

    Bridging flavour violation and leptogenesis in SU(3) family models

    Full text link
    We reconsider basic, in the sense of minimal field content, Pati-Salam x SU(3) family models which make use of the Type I see-saw mechanism to reproduce the observed mixing and mass spectrum in the neutrino sector. The goal of this is to achieve the observed baryon asymmetry through the thermal decay of the lightest right-handed neutrino and at the same time to be consistent with the expected experimental lepton flavour violation sensitivity. This kind of models have been previously considered but it was not possible to achieve a compatibility among all of the ingredients mentioned above. We describe then how different SU(3) messengers, the heavy fields that decouple and produce the right form of the Yukawa couplings together with the scalars breaking the SU(3) symmetry, can lead to different Yukawa couplings. This in turn implies different consequences for flavour violation couplings and conditions for realizing the right amount of baryon asymmetry through the decay of the lightest right-handed neutrino. Also a highlight of the present work is a new fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte

    One-step isolation and biochemical characterization of a highlyactive plant PSII monomeric core

    Get PDF
    We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009)

    The Influence of Physiological Status on age Prediction of Anopheles Arabiensis Using Near Infra-red spectroscopy

    Get PDF
    Determining the age of malaria vectors is essential for evaluating the impact of interventions that reduce the survival of wild mosquito populations and for estimating changes in vectorial capacity. Near infra-red spectroscopy (NIRS) is a simple and non-destructive method that has been used to determine the age and species of Anopheles gambiae s.l. by analyzing differences in absorption spectra. The spectra are affected by biochemical changes that occur during the life of a mosquito and could be influenced by senescence and also the life history of the mosquito, i.e., mating, blood feeding and egg-laying events. To better understand these changes, we evaluated the influence of mosquito physiological status on NIR energy absorption spectra. Mosquitoes were kept in individual cups to permit record keeping of each individual insect’s life history. Mosquitoes of the same chronological age, but at different physiological stages, were scanned and compared using cross-validations. We observed a slight trend within some physiological stages that suggest older insects tend to be predicted as being physiologically more mature. It was advantageous to include mosquitoes of different chronological ages and physiological stages in calibrations, as it increases the robustness of the model resulting in better age predictions. Progression through different physiological statuses of An. arabiensis influences the chronological age prediction by the NIRS. Entomologists that wish to use NIR technology to predict the age of field-caught An. gambiae s.l from their study area should use a calibration developed from their field strain using mosquitoes of diverse chronological ages and physiological stages to increase the robustness and accuracy of the predictions.\u

    Millennial atmospheric CO2 changes linked to ocean ventilation modes over past 150,000 years

    Get PDF
    Ice core measurements show diverse atmospheric CO2 variations—increasing, decreasing or remaining stable—during millennial-scale North Atlantic cold periods called stadials. The reasons for these contrasting trends remain elusive. Ventilation of carbon-rich deep oceans can profoundly affect atmospheric CO2, but its millennial-scale history is poorly constrained. Here we present a well-dated high-resolution deep Atlantic acidity record over the past 150,000 years, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. Our data provide observational evidence to show that strong and often volumetrically extensive Southern Ocean ventilation released substantial amounts of deep-sea carbon during stadials when atmospheric CO2 rose prominently. By contrast, other stadials were characterized by weak ventilation via both Southern Ocean and North Atlantic, which promoted respired carbon accumulation and thus curtailed or reversed deep-sea carbon losses, resulting in diminished rises or even declines in atmospheric CO2. Our findings demonstrate that millennial-scale changes in deep-sea carbon storage and atmospheric CO2 are modulated by multiple ocean ventilation modes through the interplay of the two polar regions, rather than by the Southern Ocean alone, which is critical for comprehensive understanding of past and future carbon cycle adjustments to climate change
    corecore