50 research outputs found

    Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    Get PDF
    Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data. © 2017 The Author(s)

    Quantitative Analysis of Viral Load per Haploid Genome Revealed the Different Biological Features of Merkel Cell Polyomavirus Infection in Skin Tumor

    Get PDF
    Merkel cell polyomavirus (MCPyV) has recently been identified in Merkel cell carcinoma (MCC), an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR) and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9) and other sun exposure-related skin tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen’s disease [n = 34], seborrheic keratosis [n = 5], primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]). In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%), BCC (1 case; 2%), and AK (3 cases; 6%). We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119–42.8) and AK (0.02–0.07) groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662). Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4) demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC), but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection

    Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing

    Get PDF
    The human skin is a complex ecosystem that hosts a heterogeneous flora. Until recently, the diversity of the cutaneous microbiota was mainly investigated for bacteria through culture based assays subsequently confirmed by molecular techniques. There are now many evidences that viruses represent a significant part of the cutaneous flora as demonstrated by the asymptomatic carriage of beta and gamma-human papillomaviruses on the healthy skin. Furthermore, it has been recently suggested that some representatives of the Polyomavirus genus might share a similar feature. In the present study, the cutaneous virome of the surface of the normal-appearing skin from five healthy individuals and one patient with Merkel cell carcinoma was investigated through a high throughput metagenomic sequencing approach in an attempt to provide a thorough description of the cutaneous flora, with a particular focus on its viral component. The results emphasize the high diversity of the viral cutaneous flora with multiple polyomaviruses, papillomaviruses and circoviruses being detected on normal-appearing skin. Moreover, this approach resulted in the identification of new Papillomavirus and Circovirus genomes and confirmed a very low level of genetic diversity within human polyomavirus species. Although viruses are generally considered as pathogen agents, our findings support the existence of a complex viral flora present at the surface of healthy-appearing human skin in various individuals. The dynamics and anatomical variations of this skin virome and its variations according to pathological conditions remain to be further studied. The potential involvement of these viruses, alone or in combination, in skin proliferative disorders and oncogenesis is another crucial issue to be elucidated

    Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus

    Get PDF
    Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection

    Absence of an association of human polyomavirus and papillomavirus infection with lung cancer in China: a nested case–control study

    Get PDF
    BACKGROUND: Studies of human polyomavirus (HPyV) infection and lung cancer are limited and those regarding the association of human papillomavirus (HPV) infection and lung cancer have produced inconsistent results. METHODS: We conducted a nested case–control study to assess the association between incident lung cancer of various histologies and evidence of prior infection with HPyVs and HPVs. We selected serum from 183 cases and 217 frequency matched controls from the Yunnan Tin Miner’s Cohort study, which was designed to identify biomarkers for early detection of lung cancer. Using multiplex liquid bead microarray (LBMA) antibody assays, we tested for antibodies to the VP1 structural protein and small T antigen (ST-Ag) of Merkel cell, KI, and WU HPyVs. We also tested for antibodies against HPV L1 structural proteins (high-risk types 16, 18, 31, 33, 52, and 58 and low-risk types 6 and 11) and E6 and E7 oncoproteins (high risk types 16 and 18). Measures of antibody reactivity were log transformed and analyzed using logistic regression. RESULTS: We found no association between KIV, WUV, and MCV antibody levels and incident lung cancer (P-corrected for multiple comparisons >0.10 for all trend tests). We also found no association with HPV-16, 18, 31, 33, 52, and 58 seropositivity (P-corrected for multiple comparisons >0.05 for all). CONCLUSIONS: Future studies of infectious etiologies of lung cancer should look beyond HPyVs and HPVs as candidate infectious agents. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2381-3) contains supplementary material, which is available to authorized users

    Distinct Merkel Cell Polyomavirus Molecular Features in Tumour and Non Tumour Specimens from Patients with Merkel Cell Carcinoma

    Get PDF
    Merkel Cell Polyomavirus (MCPyV) is associated with Merkel Cell carcinoma (MCC), a rare, aggressive skin cancer with neuroendocrine features. The causal role of MCPyV is highly suggested by monoclonal integration of its genome and expression of the viral large T (LT) antigen in MCC cells. We investigated and characterized MCPyV molecular features in MCC, respiratory, urine and blood samples from 33 patients by quantitative PCR, sequencing and detection of integrated viral DNA. We examined associations between either MCPyV viral load in primary MCC or MCPyV DNAemia and survival. Results were interpreted with respect to the viral molecular signature in each compartment. Patients with MCC containing more than 1 viral genome copy per cell had a longer period in complete remission than patients with less than 1 copy per cell (34 vs 10 months, P = 0.037). Peripheral blood mononuclear cells (PBMC) contained MCPyV more frequently in patients sampled with disease than in patients in complete remission (60% vs 11%, P = 0.00083). Moreover, the detection of MCPyV in at least one PBMC sample during follow-up was associated with a shorter overall survival (P = 0.003). Sequencing of viral DNA from MCC and non MCC samples characterized common single nucleotide polymorphisms defining 8 patient specific strains. However, specific molecular signatures truncating MCPyV LT were observed in 8/12 MCC cases but not in respiratory and urinary samples from 15 patients. New integration sites were identified in 4 MCC cases. Finally, mutated-integrated forms of MCPyV were detected in PBMC of two patients with disseminated MCC disease, indicating circulation of metastatic cells. We conclude that MCPyV molecular features in primary MCC tumour and PBMC may help to predict the course of the disease

    Clinical impact of the loss of chromosome 7q on outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem cell transplantation

    Get PDF
    We conducted a nationwide retrospective study to evaluate the prognostic influence of +1, der(1;7)(q10;p10) [hereafter der(1;7)] and ?7/del(7q) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for de novo myelodysplastic syndromes (MDS). In this database, 69 MDS patients with der(1;7), 75 with ?7/del(7q), and 511 with normal karyotype (NK) underwent allo-HSCT at advanced disease status. The 3-year overall survival (OS) and cumulative incidence of relapse (CIR) were 50.4 and 19.4% for those with der(1;7), 36.2 and 38.4% for ?7/del(7q),and 51.1 and 20.7% for NK, respectively. In the multivariate analysis, the presence of ?7/del(7q) correlated with a significantly shorter OS (HR [95% CI], 1.38 [1.00?1.89]; P = 0.048) and higher CIR (HR, 2.11 [1.36?3.28]; P = 0.001) than those with NK. There were 23 patients with der(1;7), 29 with ?7/del(7q), and 347 with NK who underwent allo-HSCT at early disease status.The 3-year OS and CIR were as follows: 47.3 and 9.5% for the der(1;7) group, 70.5 and 13.8% for ?7/del(7q), and 70.9 and 5.6% for NK,respectively. No significant differences were observed in OS and CIR among three groups. The impact of the loss of chromosome 7q on OS and CIR may differ based on its type and disease status after allo-HSCT for MDS
    corecore