661 research outputs found

    Correctness, completeness and termination of pattern-based model-to-model transformation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-03741-2_26Proceedings of Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009.Model-to-model (M2M) transformation consists in trans- forming models from a source to a target language. Many transformation languages exist, but few of them combine a declarative and relational style with a formal underpinning able to show properties of the transformation. Pattern-based transformation is an algebraic, bidirectional, and relational approach to M2M transformation. Specifications are made of patterns stating the allowed or forbidden relations between source and target models, and then compiled into low level operational mechanisms to perform source-to-target or target-to-source transformations. In this paper, we study the compilation into operational triple graph grammar rules and show: (i) correctness of the compilation of a specification without negative patterns; (ii) termination of the rules, and (iii) completeness, in the sense that every model considered relevant can be built by the rules.Work supported by the Spanish Ministry of Science and Innovation, projects METEORIC (TIN2008-02081), MODUWEB (TIN2006-09678) and FORMALISM (TIN2007-66523). Moreover, part of this work was done during a sabbatical leave of the first author at TU Berlin, with financial support from the Spanish Ministry of Science and Innovation (grant ref. PR2008-0185). We thank the referees for their useful comment

    Borrowed contexts for attributed graphs

    Get PDF
    Borrowed context graph transformation is a simple and powerful technique developed by Ehrig and König that allow us to derive labeled transitions and bisimulation congruences for graph transformation systems or, in general, for pocess calculi that can be defined in terms of graph transformation systems. Moreover, the same authors have also shown how to use this technique for the verification of bisimilarity. In principle, the main results about borrowed context transformation do not apply only to plain graphs, but they are generic in the sense that they apply to all categories tha satisfy certain properties related to the notion of adhesivity. In particular, this is the case of attributed graphs. However, as we show in the paper, the techniques used for checking bisimilarity are not equally generic and, in particular they fail, if we want to apply them to attributed graphs. To solve this problem, in this paper, we define a special notion of symbolic graph bisimulation and show how it can be used to check bisimilarity of attributed graphs.Postprint (published version

    Pattern-based model-to-model transformation: Handling attribute conditions

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02408-5_7Proceedings of Second International Conference, ICMT 2009, Zurich, Switzerland, June 29-30, 2009Pattern-based model-to-model transformation is a new approach for specifying transformations in a declarative, relational and formal style. The language relies on patterns describing allowed or forbidden relations between two models, which are compiled into operational mechanisms to perform forward and backward transformations. In this paper, we extend the approach for handling attribute conditions expressed in some suitable logic, adapt the operational mechanisms based on graph transformation to relax attribute handling by constraint solving, and discuss heuristics for the compilation of patterns into rules.Work supported by the Spanish Ministry of Science and Innovation, projects METEORIC (TIN2008-02081),MODUWEB (TIN2006-09678) and FORMALISM (TIN2007-66523).Moreover, part of this work was done during a sabbatical leave of the third author at TU Berlin, with financial support from the Ministerio de Ciencia e Innovaci´on (grant ref. PR2008-0185). We thank the referees for their useful comment

    Synthesis of OCL Pre-conditions for Graph Transformation Rules

    Get PDF
    Proceedings of: Third International Conference on Model Transformation (ICMT 2010): Theory and Practice of Model Transformation. Málaga, Spain, 28 June-02 July, 2010Graph transformation (GT) is being increasingly used in Model Driven Engineering (MDE) to describe in-place transformations like animations and refactorings. For its practical use, rules are often complemented with OCL application conditions. The advancement of rule post-conditions into pre-conditions is a well-known problem in GT, but current techniques do not consider OCL. In this paper we provide an approach to advance post-conditions with arbitrary OCL expressions into pre-conditions. This presents benefits for the practical use of GT in MDE, as it allows: (i) to automatically derive pre-conditions from the meta-model integrity constraints, ensuring rule correctness, (ii) to derive pre-conditions from graph constraints with OCL expressions and (iii) to check applicability of rule sequences with OCL conditions.Work funded by the Spanish Ministry of Science and Innovation through projects “Design and construction of a Conceptual Modeling Assistant” (TIN2008-00444/TIN - Grupo Consolidado), “METEORIC” (TIN2008-02081),mobility grants JC2009-00015 and PR2009-0019, and the R&D program of the Community of Madrid (S2009/TIC-1650, project “e-Madrid”).Publicad

    Representing First-Order Logic Using Graphs

    Get PDF
    Abstract. We show how edge-labelled graphs can be used to represent first-order logic formulae. This gives rise to recursively nested structures, in which each level of nesting corresponds to the negation of a set of existentials. The model is a direct generalisation of the negative application conditions used in graph rewriting, which count a single level of nesting and are thereby shown to correspond to the fragment ∃¬∃ of first-order logic. Vice versa, this generalisation may be used to strengthen the notion of application conditions. We then proceed to show how these nested models may be flattened to (sets of) plain graphs, by allowing some structure on the labels. The resulting formulae-as-graphs may form the basis of a unification of the theories of graph transformation and predicate transformation

    Using graph transformation algorithms to generate natural language equivalents of icons expressing medical concepts

    Full text link
    A graphical language addresses the need to communicate medical information in a synthetic way. Medical concepts are expressed by icons conveying fast visual information about patients' current state or about the known effects of drugs. In order to increase the visual language's acceptance and usability, a natural language generation interface is currently developed. In this context, this paper describes the use of an informatics method ---graph transformation--- to prepare data consisting of concepts in an OWL-DL ontology for use in a natural language generation component. The OWL concept may be considered as a star-shaped graph with a central node. The method transforms it into a graph representing the deep semantic structure of a natural language phrase. This work may be of future use in other contexts where ontology concepts have to be mapped to half-formalized natural language expressions.Comment: Presented at the TSD 2014 conference: Text, Speech and Dialogue, 17th international conference. Brno, Czech Republic, September 8-12, 2014. 10 pages, 7 figure

    Translating model simulators to analysis models

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-78743-3_6Proceedings of 11th International Conference, FASE 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.We present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language by means of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets.Work sponsored by the Spanish Ministry of Science and Education, project MOSAIC (TSI2005-08225-C07-06

    Formal support for QVT-Relations with Coloured Petri nets

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04425-0_19Proceedings of 12th International Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009QVT is the OMG standard language for specifying model-to-model transformations in MDA. Even though it plays a crucial role in model driven development, there are scarce tools supporting the execution of its sublanguage QVT-Relations, and none for its analysis or verification. In order to alleviate this situation, this paper provides a formal semantics for QVT-Relations through its compilation into Coloured Petri nets, enabling the execution and validation of QVT specifications. The theory of Petri nets provides useful techniques to analyse transformations (e.g. reachability, model-checking, boundedness and invariants) and to determine their confluence and termination given a starting model. We also report on using CPNTools for the execution, debugging, and analysis of transformations, and on a tool chain to transform QVT-Relations specifications into the input format of CPNTools.Work supported by the Spanish Ministry of Science and Innovation, projects METEORIC (TIN2008-02081) and MODUWEB (TIN2006-09678
    corecore