1,634 research outputs found

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: Several acute illness severity scores have been proposed for evaluating patients on admission to intensive care units but these have not been compared for patients with nosocomial bloodstream infection (nBSI). We compared three severity of illness scoring systems for predicting mortality in patients with nBSI due to Pseudomonas aeruginosa. METHODS: We performed a historical cohort study on 63 adults in intensive care units with P. aeruginosa monomicrobial nBSI. RESULTS: The Acute Physiology, Age, Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Simplified Acute Physiologic Score (SAPS II), were calculated daily from 2 days prior through 2 days after the first positive blood culture. Calculation of the area under the receiver operating characteristic (ROC) curve confirmed that APACHE II and SAPS II at day -1 and SOFA at day +1 were better predictors of outcome than days -2, 0 and day 2 of BSI. By stepwise logistic regression analysis of these three scoring systems, SAPS II (OR: 13.03, CI95% 2.51–70.49) and APACHE II (OR: 12.51, CI95% 3.12–50.09) on day -1 were the best predictors for mortality. CONCLUSION: SAPS II and APACHE II are more accurate than the SOFA score for predicting mortality in this group of patients at day -1 of BSI

    Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox

    Get PDF
    This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results

    Crude incidence in two-phase designs in the presence of competing risks.

    Get PDF
    BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived

    Baryon Washout, Electroweak Phase Transition, and Perturbation Theory

    Get PDF
    We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients

    Get PDF
    Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT\ubcT0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4\u20138 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (Po0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73\u20130.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10\u20134.11)-fold and 4.55 (95% CI 1.48\u201313.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy

    Flavor in Minimal Conformal Technicolor

    Full text link
    We construct a complete, realistic, and natural UV completion of minimal conformal technicolor that explains the origin of quark and lepton masses and mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The exchange of heavy scalar doublets generates higher-dimension interactions between technifermions and quarks and leptons that give rise to quark and lepton masses at the TeV scale. Obtaining a sufficiently large top quark mass requires strong dynamics at the supersymmetry breaking scale in both the top and technicolor sectors. This is natural if the theory above the supersymmetry breaking also has strong conformal dynamics. We present two models in which the strong top dynamics is realized in different ways. In both models, constraints from flavor-changing effects can be easily satisfied. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino. We argue that this light gaugino is a general consequence of conformal technicolor embedded into a supersymmetric theory. If the gaugino has mass below the TeV scale it will give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde
    • …
    corecore