26 research outputs found

    A Combined Pulmonary Function and Emphysema Score Prognostic Index for Staging in Chronic Obstructive Pulmonary Disease

    No full text
    Chronic Obstructive Pulmonary Disease (COPD) is characterized by high morbidity and mortality. Lung computed tomography parameters, individually or as part of a composite index, may provide more prognostic information than pulmonary function tests alone.To investigate the prognostic value of emphysema score and pulmonary artery measurements compared with lung function parameters in COPD and construct a prognostic index using a contingent staging approach.Predictors of mortality were assessed in COPD outpatients whose lung computed tomography, spirometry, lung volumes and gas transfer data were collected prospectively in a clinical database. Univariate and multivariate Cox proportional hazard analysis models with bootstrap techniques were used.169 patients were included (59.8% male, 61.1 years old; Forced Expiratory Volume in 1 second % predicted: 40.5±19.2). 20.1% died; mean survival was 115.4 months. Age (HR = 1.098, 95% Cl = 1.04-1.252) and emphysema score (HR = 1.034, 95% CI = 1.007-1.07) were the only independent predictors of mortality. Pulmonary artery dimensions were not associated with survival. An emphysema score of 55% was chosen as the optimal threshold and 30% and 65% as suboptimals. Where emphysema score was between 30% and 65% (intermediate risk) the optimal lung volume threshold, a functional residual capacity of 210% predicted, was applied. This contingent staging approach separated patients with an intermediate risk based on emphysema score alone into high risk (Functional Residual Capacity ≥210% predicted) or low risk (Functional Residual Capacity <210% predicted). This approach was more discriminatory for survival (HR = 3.123; 95% CI = 1.094-10.412) than either individual component alone.Although to an extent limited by the small sample size, this preliminary study indicates that the composite Emphysema score-Functional Residual Capacity index might provide a better separation of high and low risk patients with COPD, than other individual predictors alone

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    The prevalence of undiagnosed chronic obstructive pulmonary disease in a primary care population with respiratory tract infections - a case finding study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is an underdiagnosed cause of morbidity and mortality worldwide. Prevalence of COPD has been shown to be highly associated with positive smoking history and increasing age. Spirometry is the method used for diagnosing COPD. However, identifying patients at risk of COPD to undergo spirometry tests has been challenging. Therefore, there is a need for new cost-effective and feasible diagnostic screening procedures for use in primary care centers. Our aim was to describe the prevalence and severity of undiagnosed COPD in a group of patients with respiratory infections attending urgent primary care, and to identify those variables in patients' history that could be used to detect the disease.</p> <p>Methods</p> <p>Patients of 40-75 years (n = 138) attending urgent primary care center with acute respiratory tract infection, positive smoking history and no previously known pulmonary disease underwent pre- and post bronchodilator spirometry testing four to five weeks after the acute infection. Prevalence and severity of COPD were estimated following the Global Initiative for COPD (GOLD) criteria. Variables such as sex, age, current smoking status, smoking intensity (pack years) and type of infection diagnosis were assessed for possible associations with COPD.</p> <p>Results</p> <p>The prevalence of previously undiagnosed COPD in our study group was 27%, of which 45% were in stage 1 (FEV1 ≥ 80% of predicted), 53% in stage 2 (50 ≤ FEV1 < 80% of predicted), 3% in stage 3 (30 ≤ FEV1 < 50% of predicted) and 0% in stage 4 (FEV1 < 30% of predicted). We found a significant association between COPD and age ≥ 55 (OR = 10.9 [95% CI 3.8-30.1]) and between COPD and smoking intensity (pack years > 20) (OR = 3.2 [95% CI 1.2-8.5]). Sex, current smoking status and type of infection diagnosis were not shown to be significantly associated with COPD.</p> <p>Conclusion</p> <p>A middle-aged or older patient with any type of common respiratory tract infection, positive smoking history and no previously known pulmonary disease has an increased likelihood of having underlying COPD. These patients should be offered spirometry testing for diagnosis of COPD.</p

    Obesity resistance and increased energy expenditure by white adipose tissue browning in Oga +/- mice.

    Get PDF
    Aims/hypothesis O-GlcNAcylation plays a role as a metabolic sensor regulating cellular signalling, transcription and metabolism. Transcription factors and signalling pathways related to metabolism are modulated by N-acetyl-glucosamine (O-GlcNAc) modification. Aberrant regulation of O-GlcNAcylation is closely linked to insulin resistance, type 2 diabetes and obesity. Current evidence shows that increased O-GlcNAcylation negatively regulates insulin signalling, which is associated with insulin resistance and type 2 diabetes. Here, we aimed to evaluate the effects of Oga (also known as Mgea5) haploinsufficiency, which causes hyper-O-GlcNAcylation, on metabolism. Methods We examined whether Oga +/- mice developed insulin resistance. Metabolic variables were determined including body weight, glucose and insulin tolerance, metabolic rate and thermogenesis. Results Oga deficiency does not affect insulin signalling even at hyper-O-GlcNAc levels. Oga +/- mice are lean with reduced fat mass and improved glucose tolerance. Furthermore, Oga +/- mice resist high-fat diet-induced obesity with ameliorated hepatic steatosis and improved glucose metabolism. Oga haploinsufficiency potentiates energy expenditure through the enhancement of brown adipocyte differentiation from the stromal vascular fraction of subcutaneous white adipose tissue (WAT). Conclusions/interpretation Our observations suggest that O-GlcNAcase (OGA) is essential for energy metabolism via regulation of the thermogenic WAT program.close0
    corecore