177 research outputs found

    Carbon mitigation in domains of high consumer lock-in

    Get PDF
    As climate policy needs to address all feasible ways to reduce carbon emissions, there is an increasing focus on demand-side solutions. Studies of household carbon footprints have allocated emissions during production to the consumption of the produced goods, and provided an understanding of what products and consumer actions cause significant emissions. Social scientists have investigated how attitudes, social norms, and structural factors shape salient behavior. Yet, there is often a disconnect as emission reductions through individual actions in the important domains of housing and mobility are challenging to attain due to lock-ins and structural constraints. Furthermore, most behavioral research focuses on actions that are easy to trace but of limited consequence as a share of total emissions. Here we study specific alternative consumption patterns seeking both to understand the behavioral and structural factors that determine those patterns and to quantify their effect on carbon footprints. We do so utilizing a survey on consumer behavioral, attitudinal, contextual and socio-demographic factors in four different regions in the EU. Some differences occur in terms of the driving forces behind behaviors and their carbon intensities. Based on observed differences in mobility carbon footprints across households, we find that the key determining element to reduced emissions is settlement density, while car ownership, rising income and long distances are associated with higher mobility footprints. For housing, our results indicate that changes in dwelling standards and larger household sizes may reduce energy needs and the reliance on fossil fuels. However, there remains a strong need for incentives to reduce the carbon intensity of heating and air travel. We discuss combined effects and the role of policy in overcoming structural barriers in domains where consumers as individuals have limited agency

    Mapping the carbon footprint of EU regions

    Get PDF
    While the EU Commission has encouraged Member States to combine national and international climate change mitigation measures with subnational environmental policies, there has been little harmonized effort towards the quantification of embodied greenhouse gas (GHG) emissions from household consumption across European regions. This study develops an inventory of carbon footprints associated with household consumption for 177 regions in 27 EU countries, thus, making a key contribution for the incorporation of consumption-based accounting into local decision-making. Footprint calculations are based on consumer expenditure surveys and environmental and trade detail from the EXIOBASE 2.3 multiregional input-output database describing the world economy in 2007 at the detail of 43 countries, 5 rest-of-the-world regions and 200 product sectors. Our analysis highlights the spatial heterogeneity of embodied GHG emissions within multiregional countries with subnational ranges varying widely between 0.6 and 6.5 tCO2e/cap. The significant differences in regional contribution in terms of total and per capita emissions suggest notable differences with regards to climate change responsibility. The study further provides a breakdown of regional emissions by consumption categories (e.g. housing, mobility, food). In addition, our region-level study evaluates driving forces of carbon footprints through a set of socio-economic, geographic and technical factors. Income is singled out as the most important driver for a region's carbon footprint, although its explanatory power varies significantly across consumption domains. Additional factors that stand out as important on the regional level include household size, urban-rural typology, level of education, expenditure patterns, temperature, resource availability and carbon intensity of the electricity mix. The lack of cross-national region-level studies has so far prevented analysts from drawing broader policy conclusions that hold beyond national and regional borders

    "Open Innovation" and "Triple Helix" Models of Innovation: Can Synergy in Innovation Systems Be Measured?

    Get PDF
    The model of "Open Innovations" (OI) can be compared with the "Triple Helix of University-Industry-Government Relations" (TH) as attempts to find surplus value in bringing industrial innovation closer to public R&D. Whereas the firm is central in the model of OI, the TH adds multi-centeredness: in addition to firms, universities and (e.g., regional) governments can take leading roles in innovation eco-systems. In addition to the (transversal) technology transfer at each moment of time, one can focus on the dynamics in the feedback loops. Under specifiable conditions, feedback loops can be turned into feedforward ones that drive innovation eco-systems towards self-organization and the auto-catalytic generation of new options. The generation of options can be more important than historical realizations ("best practices") for the longer-term viability of knowledge-based innovation systems. A system without sufficient options, for example, is locked-in. The generation of redundancy -- the Triple Helix indicator -- can be used as a measure of unrealized but technologically feasible options given a historical configuration. Different coordination mechanisms (markets, policies, knowledge) provide different perspectives on the same information and thus generate redundancy. Increased redundancy not only stimulates innovation in an eco-system by reducing the prevailing uncertainty; it also enhances the synergy in and innovativeness of an innovation system.Comment: Journal of Open Innovations: Technology, Market and Complexity, 2(1) (2016) 1-12; doi:10.1186/s40852-016-0039-

    Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    Get PDF
    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels

    Behavioural syndrome in a solitary predator is independent of body size and growth rate.

    Get PDF
    Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as repeatable foraging behaviour across risk. Pike swimming activity, latency to prey attack, number of successful and unsuccessful prey attacks was measured during the presence/absence of visual contact with a competitor or predator. Foraging behaviour across risks was considered an appropriate indicator of boldness in this solitary predator where a trade-off between foraging behaviour and threat avoidance has been reported. Support was found for a behavioural syndrome, where the rank order differences in the foraging behaviour between individuals were maintained across time and risk situation. However, individual behaviour was independent of body size and growth in conditions of high food availability, showing no evidence to support the state-dependent personality hypothesis. The importance of a combination of spatial and temporal environmental variation for generating growth differences is highlighted

    Gold nanoparticles supported on magnesium oxide for CO oxidation

    Get PDF
    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts

    Ibrutinib in the Treatment of Refractory Chronic Lymphocytic Leukemia

    Get PDF
    Background & Aims. This paper presents the results of the observational study of ibrutinib in patients with chronic lymphocytic leukemia (CLL), conducted in SP Botkin Municipal Clinical Hospital. The main objective was the analysis of complications of ibrutinib and identification of factors, influencing the dosage regimen; the secondary objective was the estimation of the total response to treatment, event-free and overall survival. Materials & Methods. The study included 96 patients with CLL with indications for ibrutinib therapy. The median age was 64,9 years (range 32–91 years), the study population consisted of 69 (72 %) men and 27 (28 %) women. The condition of 25 (26 %) patients according to the ECOG scale was of > 3 points. The disease of stage C were diagnosed in 36 (37 %) patients . Deletion of 17p/TP53 mutations were detected in 29 (33 %) of 87 patients. Seventy patients had refractory CLL. The median of the number of the lines of the previous therapy was 3 (range 1–9). Adverse events were assessed in accordance with the CTCAE criteria, version 4.0; the bleeding severity was evaluated using ITP-specific bleeding score; hematological complications were classified according to the recommendations of IWCLL-2008. Results. Ibrutinib was administered at a dosage of 420 mg per day daily until progression or intolerable toxicity. The median duration of ibrutinib therapy was 10.3 months. Ibrutinib was shown to have moderate toxicity, mostly of grade I or II. The bleeding was the most frequent complication. Of the hematological complications, thrombocytopenia was the most common (35 %); neutropenia grade III) developed in 26 % of patients. The treatment response was assessed in 92 patients. The overall response to treatment was 89 %. Complete remission, partial remission and partial remission with lymphocytosis were achieved in 4 (4 %), 57 (62 %), and 21 (23 %) patients, respectively. The event-free survival and overall survival by the month 10 was 90 % and 91 %, respectively. For this observation period, ECOG status and the number of the lines of therapy prior to ibrutinib had the prognostic value. Conclusion. Ibrutinib was shown to have high efficiency in relapsed/refractory forms of CLL. The nature of the ibrutinib toxicity is fundamentally different from that of the conventional chemotherapy. The frequency of ibrutinib therapy complications and patients’ non-compliance depends on the intensity of the previous treatment of CLL. Despite a short observation period, it can be concluded that ibrutinib had the greatest impact on the patient’s quality of life when administered for the first relapse. The low toxicity of ibrutinib is likely to allow the combination with other antitumor agents
    corecore