207 research outputs found

    Condylar volume and surface in Caucasian young adult subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There have been no quantitative standards for volumetric and surface measurements of the mandibular condyle in Caucasian population. However, the recently developed cone-beam computed tomography (CBCT) system allows measurement of these parameters with high accuracy.</p> <p>Methods</p> <p>CBCT was used to measure the condylar volume, surface and the volume to surface ratio, called the Morphometric Index (MI), of 300 temporo-mandibular joints (TMJ) in 150 Caucasian young adult subjects, with varied malocclusions, without pain or dysfunction of TMJs.</p> <p>Results</p> <p>The condylar volume was 691.26 ± 54.52 mm<sup>3 </sup>in males and 669.65 ± 58.80 mm<sup>3 </sup>in, and was significantly higher (<it>p</it>< 0.001) in the males. The same was observed for the condylar surface, although without statistical significance (406.02 ± 55.22 mm<sup>2 </sup>in males and 394.77 ± 60.73 mm<sup>2 </sup>in females).</p> <p>Furthermore, the condylar volume (693.61 ± 62.82 mm<sup>3 </sup>) in the right TMJ was significantly higher than in the left (666.99 ± 48.67 mm<sup>3</sup>, <it>p </it>< 0.001) as was the condylar surface (411.24 ± 57.99 mm<sup>2 </sup>in the right TMJ and 389.41 ± 56.63 mm<sup>2 </sup>in the left TMJ; <it>t </it>= 3.29; <it>p </it>< 0.01). The MI is 1.72 ± 0.17 for the whole sample, with no significant difference between males and females or the right and left sides.</p> <p>Conclusion</p> <p>These data from temporomandibular joints of patients without pain or clinical dysfunction might serve as examples of normal TMJ's in the general population not seeking orthodontic care.</p

    Visual detail about the body modulates tactile localisation biases

    Get PDF
    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface, and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini and colleagues (2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought

    Entanglement Dynamics between Inertial and Non-uniformly Accelerated Detectors

    Full text link
    We study the time-dependence of quantum entanglement between two Unruh-DeWitt detectors, one at rest in a Minkowski frame, the other non-uniformly accelerated in some specified way. The two detectors each couple to a scalar quantum field but do not interact directly. The primary challenge in problems involving non-uniformly accelerated detectors arises from the fact that an event horizon is absent and the Unruh temperature is ill-defined. By numerical calculation we demonstrate that the correlators of the accelerated detector in the weak coupling limit behaves like those of an oscillator in a bath of time-varying "temperature" proportional to the instantaneous proper acceleration of the detector, with oscillatory modifications due to non-adiabatic effects. We find that in this setup the acceleration of the detector in effect slows down the disentanglement process in Minkowski time due to the time dilation in that moving detectorComment: 20 pages, 15 figures; References added; More analysis given in Appendix C; Typos correcte

    Catalases Are NAD(P)H-Dependent Tellurite Reductases

    Get PDF
    Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3) (2−)) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical

    Mining protein loops using a structural alphabet and statistical exceptionality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.</p> <p>Results</p> <p>We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints.</p> <p>Conclusions</p> <p>We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at <url>http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/</url>.</p

    Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)

    Get PDF
    PurposeWe have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves V˙O2V˙O2 max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT.MethodsIn Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m−2, V˙O2V˙O2 max: 51 ± 11 ml kg−1 min−1) performed a single 10-min REHIT cycling session (60 W and two 20-s ‘all-out’ sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m−2; 39 ± 10 ml kg−1 min−1) performed three trials (REHIT, 30-min cycling at 50 % of V˙O2V˙O2 max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise.ResultsAcutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in V˙O2V˙O2 , RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected.ConclusionsCollectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise

    PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria

    Get PDF
    This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family

    Adiposity and Age Explain Most of the Association between Physical Activity and Fitness in Physically Active Men

    Get PDF
    BACKGROUND: To determine if there is an association between physical activity assessed by the short version of the International Physical Activity Questionnaire (IPAQ) and cardiorespiratory and muscular fitness. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and eighty-two young males (age range: 20-55 years) completed the short form of the IPAQ to assess physical activity. Body composition (dual-energy X-Ray absorptiometry), muscular fitness (static and dynamic muscle force and power, vertical jump height, running speed [30 m sprint], anaerobic capacity [300 m running test]) and cardiorespiratory fitness (estimated VO(2)max: 20 m shuttle run test) were also determined in all subjects. Activity-related energy expenditure of moderate and vigorous intensity (EEPA(moderate) and EEPA(vigorous), respectively) was inversely associated with indices of adiposity (r = -0.21 to -0.37, P<0.05). Cardiorespiratory fitness (VO(2)max) was positively associated with LogEEPA(moderate) (r = 0.26, P<0.05) and LogEEPA(vigorous) (r = 0.27). However, no association between VO(2)max with LogEEPA(moderate), LogEPPA(vigorous) and LogEEPA(total) was observed after adjusting for the percentage of body fat. Multiple stepwise regression analysis to predict VO(2)max from LogEEPA(walking), LogEEPA(moderate), LogEEPA(vigorous), LogEEPA(total), age and percentage of body fat (%fat) showed that the %fat alone explained 62% of the variance in VO(2)max and that the age added another 10%, while the other variables did not add predictive value to the model [VO(2)max  = 129.6-(25.1× Log %fat) - (34.0× Log age); SEE: 4.3 ml.kg(-1). min(-1); R(2) = 0.72 (P<0.05)]. No positive association between muscular fitness-related variables and physical activity was observed, even after adjusting for body fat or body fat and age. CONCLUSIONS/SIGNIFICANCE: Adiposity and age are the strongest predictors of VO(2)max in healthy men. The energy expended in moderate and vigorous physical activities is inversely associated with adiposity. Muscular fitness does not appear to be associated with physical activity as assessed by the IPAQ

    Synaptic Reorganization in the Adult Rat's Ventral Cochlear Nucleus following Its Total Sensory Deafferentation

    Get PDF
    Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×109 SCZs per mm3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain
    corecore