21 research outputs found

    What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts

    Get PDF
    Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1–2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’

    FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells

    Get PDF
    Fibroblast growth factor receptor 3 (FGFR3) is one of four high-affinity tyrosine kinase receptors for the FGF family of ligands, frequently associated with growth arrest and induction of differentiation. The extracellular immunoglobulin (IgG)-like domains II and III are responsible for ligand binding; alternative usage of exons IIIb and IIIc of the Ig-like domain III determining the ligand-binding specificity of the receptor. By reverse transcriptase polymerase chain reaction (RT–PCR) a novel FGFR3IIIc variant FGFR3IIIS, expressed in a high proportion of tumours and tumour cell lines but rarely in normal tissues, has been identified. Unlike recently described nonsense transcripts of FGFR3, the coding region of FGFR3IIIS remains in-frame producing a novel protein. The protein product is coexpressed with FGFR3IIIc in the membrane and soluble cell fractions; expression in the soluble fraction is decreased after exposure to bFGF but not aFGF. Knockout of FGFR3IIIS using antisense has a growth-inhibitory effect in vitro, suggesting a dominant-negative function for FGFR3IIIS inhibiting FGFR3-induced growth arrest. In summary, alternative splicing of the FGFR3 Ig-domain III represents a mechanism for the generation of receptor diversity. FGFR3IIIS may regulate FGF and FGFR trafficking and function, possibly contributing to the development of a malignant phenotype

    Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo

    Get PDF
    BACKGROUND: Activating mutations of FGFR3 are frequently identified in superficial urothelial carcinoma (UC) and increased expression of FGFR1 and FGFR3 are common in both superficial and invasive UC. METHODS: The effects of inhibition of receptor activity by three small molecule inhibitors (PD173074, TKI-258 and SU5402) were investigated in a panel of bladder tumour cell lines with known FGFR expression levels and FGFR3 mutation status. RESULTS: All inhibitors prevented activation of FGFR3, and inhibited downstream MAPK pathway signalling. Response was related to FGFR3 and/or FGFR1 expression levels. Cell lines with the highest levels of FGFR expression showed the greatest response and little or no effect was measured in normal human urothelial cells or in UC cell lines with activating RAS gene mutations. In sensitive cell lines, the drugs induced cell cycle arrest and/or apoptosis. IC(50) values for PD173074 and TKI-258 were in the nanomolar concentration range compared with micromolar concentrations for SU5402. PD173074 showed the greatest effects in vitro and in vivo significantly delayed the growth of subcutaneous bladder tumour xenografts. CONCLUSION: These results indicate that inhibition of FGFR1 and wild-type or mutant FGFR3 may represent a useful therapeutic approach in patients with both non-muscle invasive and muscle invasive UC

    Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074

    No full text
    The t(4;14)(p16.3;q32), associated with 10-20% of cases of multiple myeloma (MM), deregulates the expression of MMSET and FGFR3. To assess the potential of FGFR3 as a drug target, we evaluated the effects of selective inhibitors on MM and control cell lines. SU5402 and PD173074 specifically inhibited the growth of the two t(4;14)-positive MM lines, KMS-11 and OPM-2. Importantly, inhibition was still observed in the presence of IL-6, a growth factor known to play an important role in MM. Both compounds induced a dose-dependent reduction in cell viability and an increase in apoptosis, accompanied by a decrease in extracellular signal-related kinase phosphorylation. In contrast, no inhibition was seen with either compound against t(4;14)-negative cell lines or NCI-H929, a t(4;14)-positive, FGFR3-negative MM cell line. FGFR3 is thus a plausible candidate for targeted therapy in a subset of MM patients

    Composition of the floral nectar of different subgenera of Argentinian Passiflora species

    Get PDF
    The composition of the floral nectar sugars and amino acids of four species of Passiflora (P. foetida, P. caerulea, P. suberosa, and P. misera) included in different infrageneric taxa and with distinct pollination mechanisms has been studied. The effect of weather and floral age on nectar volume, existence, and total and relative amounts of the various compounds was explored. The proportion of sugars was rather constant within a given species whereas the composition, number, and total quantity of amino acids showed great intraspecific and intra-plant variability; these nectar properties were independent of floral stage or meteorological conditions. Species belonging to the same subgenus displayed equivalent sugar ratios and similar total amount of amino acids, so these characteristics might be conservative in the genus. For all species, the amino acid concentration surpassed known values for their respective pollination syndromes, viz. bee and wasp-pollinated flowers. No relationship emerged between pollinators with different glossa length and nectars with distinct sugar ratios. Rather, nectar chemical composition seems to reflect taxonomic relationships.Fil: Amela Garcia, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Gottsberger, Gerhard. Universitat Ulm; Alemani

    Social Thermoregulation

    No full text
    corecore