40 research outputs found

    WISE J064336.71-022315.4: A Thick Disk L8 Gaia DR2-Discovered Brown Dwarf at 13.9 Parsecs

    Get PDF
    While spectroscopically characterizing nearby ultracool dwarfs discovered in the Gaia Second Data Release with the TripleSpec spectrograph on the Palomar 200'' telescope, we encountered a particularly cool, nearby, new member of the solar neighborhood: Gaia DR2 3106548406384807680 = WISE J064336.71-022315.4 = 2MASS J06433670-0223130. The Gaia\it{Gaia} parallax corresponds to a distance of 13.9 ±\pm 0.3 pc. Using our TripleSpec spectrum we classify W0643 as spectral type L8, and measured a heliocentric radial velocity of 142 ±\pm 12 km s1^{-1}. When combined with Gaia\it{Gaia} astrometry, we determine a Galactic velocity (heliocentric; UU towards Galactic center) of U,V,WU, V, W = -109, -91, -12 (±\pm10, 5, 3) km s1^{-1}. We estimate that W0643 passed within \sim1.4 pc away from the Sun \sim100,000 years ago

    Pre-main-sequence isochrones - III: The Cluster Collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson–Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Hα Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour–magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20−11 and 665+14−7Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only)

    Pre-main-sequence isochrones - III. The cluster collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Ha Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours ofmember stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20 -11 and 665+14 -7 Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only).JMR is funded by a UK Science and Technology Facilities Council (STFC) studentship. EEM acknowledges support from the National Science Foundation (NSF) Award AST-1008908. The authors would like to thank Emanuele Tognelli for the updated set of Pisa models and John Stauffer for sharing his catalogue of Kron photometric measurements of Pleiades members. The authors would also like to thank the referee for comments which have vastly improved the clarity of the manuscript. This research has made use of data obtained at the Isaac Newton Telescope, which is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Institutio de Astrofisica de Canarias. This research has made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. This research has made use of public data from the SDSS. Funding for the SDSS was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS was managed by the Astrophysical Research Consortium for the Participating Institutions

    Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1

    Get PDF
    Even though tens of directly imaged companions have been discovered in the past decades, the number of directly confirmed multiplanet systems is still small. Dynamical analysis of these systems imposes important constraints on formation mechanisms of these wide-orbit companions. As part of the Young Suns Exoplanet Survey we report the detection of a second planetary-mass companion around the 17 Myr-old, solar-type star TYC 8998-760-1 that is located in the Lower Centaurus Crux subgroup of the Scorpius–Centaurus association. The companion has a projected physical separation of 320 au and several individual photometric measurements from 1.1 to 3.8 microns constrain a companion mass of 6 ± 1 M Jup, which is equivalent to a mass ratio of q = 0.57 ± 0.10% with respect to the primary. With the previously detected 14 ± 3 M Jup companion that is orbiting the primary at 160 au, TYC 8998-760-1 is the first directly imaged multiplanet system that is detected around a young, solar analog. We show that circular orbits are stable, but that mildly eccentric orbits for either/both components (e > 0.1) are chaotic on gigayear timescales, implying in situ formation or a very specific ejection by an unseen third companion. Due to the wide separations of the companions TYC 8998-760-1 is an excellent system for spectroscopic and photometric follow-up with space-based observatories such as the James Webb Space Telescope

    Ages for exoplanet host stars

    Full text link
    Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018

    Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry

    Get PDF
    We report the discovery of eclipses by circumstellar disc material associated with the young star PDS 110 in the Ori OB1a association using the SuperWASP and Kilodegree Extremely Little Telescope surveys. PDS 110 (HD 290380, IRAS 05209-0107) is a rare Fe/Ge-type star, an similar to 10 Myr-old accreting intermediate-mass star showing strong infrared excess (L-IR/L-bol similar or equal to 0.25). Two extremely similar eclipses with a depth of 30 per cent and duration similar to 25 d were observed in 2008 November and 2011 January. We interpret the eclipses as caused by the same structure with an orbital period of 808 +/- 2 d. Shearing over a single orbit rules out diffuse dust clumps as the cause, favouring the hypothesis of a companion at similar to 2 au. The characteristics of the eclipses are consistent with transits by an unseen low-mass (1.8-70M(Jup)) planet or brown dwarf with a circumsecondary disc of diameter similar to 0.3 au. The next eclipse event is predicted to take place in 2017 September and could be monitored by amateur and professional observatories across the world

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont
    corecore