311 research outputs found

    Association between menstrual cycle length and covid-19 vaccination: global, retrospective cohort study of prospectively collected data

    Get PDF
    Objectives To identify whether covid-19 vaccines are associated with menstrual changes in order to address concerns about menstrual cycle disruptions after covid-19 vaccination. Design Global, retrospective cohort study of prospectively collected data. Setting International users of the menstrual cycle tracking application, Natural Cycles. Participants 19 622 individuals aged 18-45 years with cycle lengths of 24-38 days and consecutive data for at least three cycles before and one cycle after covid (vaccinated group; n=14 936), and those with at least four consecutive cycles over a similar time period (unvaccinated group; n=4686). Main outcome measures The mean change within individuals was assessed by vaccination group for cycle and menses length (mean of three cycles before vaccination to the cycles after first and second dose of vaccine and the subsequent cycle). Mixed effects models were used to estimate the adjusted difference in change in cycle and menses length between the vaccinated and unvaccinated. Results Most people (n=15 713; 80.08%) were younger than 35 years, from the UK (n=6222; 31.71%), US and Canada (28.59%), or Europe (33.55%). Two thirds (9929 (66.48%) of 14 936) of the vaccinated cohort received the Pfizer-BioNTech (BNT162b2) covid-19 vaccine, 17.46% (n=2608) received Moderna (mRNA-1273), 9.06% (n=1353) received Oxford-AstraZeneca (ChAdOx1 nCoV-19), and 1.89% (n=283) received Johnson & Johnson (Ad26.COV2.S). Individuals who were vaccinated had a less than one day adjusted increase in the length of their first and second vaccine cycles, compared with individuals who were not vaccinated (0.71 day increase (99.3% confidence interval 0.47 to 0.96) for first dose; 0.56 day increase (0.28 to 0.84) for second dose). The adjusted difference was larger in people who received two doses in a cycle (3.70 days increase (2.98 to 4.42)). One cycle after vaccination, cycle length was similar to before the vaccine in individuals who received one dose per cycle (0.02 day change (99.3% confidence interval −0.10 to 0.14), but not yet for individuals who received two doses per cycle (0.85 day change (99.3% confidence interval 0.24 to 1.46)) compared with unvaccinated individuals. Changes in cycle length did not differ by the vaccine’s mechanism of action (mRNA, adenovirus vector, or inactivated virus). Menses length was unaffected by vaccination. Conclusions Covid-19 vaccination is associated with a small and likely to be temporary change in menstrual cycle length but no change in menses length

    From Children to Adults: Motor Performance across the Life-Span

    Get PDF
    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur

    Exploring the structural basis of conformational heterogeneity and autoinhibition of human cGMP-specific protein kinase Iα through computational modelling and molecular dynamics simulations.

    Get PDF
    Protein kinase Iα (PKGIα) is a pivotal cyclic guanosine monophosphate (cGMP) signalling protein. Major steps related to the structural plasticity of PKGIα have been inferred but the structural aspects of the auto-inhibition and multidomain tertiary organization of human PKGIα in active and inactive form are not clear. Here we combine computational comparative modelling, protein-protein docking and molecular dynamics (MD) simulations to investigate structural details of the repressed state of the catalytic domain of PKGIα. Exploration of the potential inhibitory conformation of the auto-inhibitory domain (AI) within the catalytic cleft reveals that the pseudo-substrate motif binds with residues of the glycine rich loop and substrate-binding lobe. Dynamic changes as a result of coupling of the catalytic and AI domains are also investigated. The three-dimensional homodimeric models of PKGIα in the active and inactive state indicate that PKGIα in its inactive-state attains a compact globular structure where cyclic nucleotide binding (CNB-A/B) domains are buried, whereas the catalytic domains are inaccessible with their substrate-binding pockets facing the N-terminal of CNB-A. Contrary to this, the active-state model of PKGIα shows an extended conformation where CNB-A/B domains are slightly rearranged and the catalytic domains of homodimer flanking the C-terminal with their substrate binding lobes free to entrap downstream proteins. These findings are consistent with previously reported static images of the multidomain organization of PKGIα. Structural insights pertaining to the conformational heterogeneity and auto-inhibition of PKGIα provided in this study may help to understand the dynamics-driven effective regulation of PKGIα

    Recombinant Lysyl Oxidase Propeptide Protein Inhibits Growth and Promotes Apoptosis of Pre-Existing Murine Breast Cancer Xenografts

    Get PDF
    Lysyl oxidase propeptide (LOX-PP) ectopic overexpression inhibits the growth of cancer xenografts. Here the ability and mode of action of purified recombinant LOX-PP (rLOX-PP) protein to inhibit the growth of pre-existing xenografts was determined. Experimental approaches employed were direct intratumoral injection (i.t.) of rLOX-PP protein into murine breast cancer NF639 xenografts, and application of a slow release formulation of rLOX-PP implanted adjacent to tumors in NCR nu/nu mice (n = 10). Tumors were monitored for growth, and after sacrifice were subjected to immunohistochemical and Western blot analyses for several markers of proliferation, apoptosis, and for rLOX-PP itself. Direct i.t. injection of rLOX-PP significantly reduced tumor volume on days 20, 22 and 25 and tumor weight at harvest on day 25 by 30% compared to control. Implantation of beads preloaded with 35 micrograms rLOX-PP (n = 10) in vivo reduced tumor volume and weight at sacrifice when compared to empty beads (p<0.05). A 30% reduction of tumor volume on days 22 and 25 (p<0.05) and final tumor weight on day 25 (p<0.05) were observed with a reduced tumor growth rate of 60% after implantation. rLOX-PP significantly reduced the expression of proliferation markers and Erk1/2 MAP kinase activation, while prominent increases in apoptosis markers were observed. rLOX-PP was detected by immunohistochemistry in harvested rLOX-PP tumors, but not in controls. Data provide pre-clinical findings that support proof of principle for the therapeutic anti-cancer potential of rLOX-PP protein formulations

    Effects of shared medical appointments on quality of life and cost-effectiveness for patients with a chronic neuromuscular disease. Study protocol of a randomized controlled trial

    Get PDF
    Contains fulltext : 96862.pdf (publisher's version ) (Open Access)BACKGROUND: Shared medical appointments are a series of one-to-one doctor-patient contacts, in presence of a group of 6-10 fellow patients. This group visits substitute the annual control visits of patients with the neurologist. The same items attended to in a one-to-one appointment are addressed. The possible advantages of a shared medical appointment could be an added value to the present management of neuromuscular patients. The currently problem-focused one-to-one out-patient visits often leave little time for the patient's psychosocial needs, patient education, and patient empowerment. METHODS/DESIGN: A randomized, prospective controlled study (RCT) with a follow up of 6 months will be conducted to evaluate the clinical and cost-effectiveness of shared medical appointments compared to usual care for 300 neuromuscular patients and their partners at the Radboud University Nijmegen Medical Center. Every included patient will be randomly allocated to one of the two study arms. This study has been reviewed and approved by the medical ethics committee of the region Arnhem-Nijmegen, The Netherlands. The primary outcome measure is quality of life as measured by the EQ-5D, SF-36 and the Individualized neuromuscular Quality of Life Questionnaire. The primary analysis will be an intention-to-treat analysis on the area under the curve of the quality of life scores. A linear mixed model will be used with random factor group and fixed factors treatment, baseline score and type of neuromuscular disease. For the economic evaluation an incremental cost-effectiveness analysis will be conducted from a societal perspective, relating differences in costs to difference in health outcome. Results are expected in 2012. DISCUSSION: This study will be the first randomized controlled trial which evaluates the effect of shared medical appointments versus usual care for neuromuscular patients. This will enable to determine if there is additional value of shared medical appointments to the current therapeutical spectrum. When this study shows that group visits produce the alleged benefits, this may help to increase the acceptance of this innovative and creative way of using one of the most precious resources in health care more efficiently: time. TRIAL REGISTRATION: DutchTrial Register http://www.trialregister.nlNTR1412

    In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Get PDF
    Basic fibroblast growth factor (bFGF), a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs) with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d) of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis

    Predicting In Vivo Efficacy of Potential Restenosis Therapies by Cell Culture Studies: Species-Dependent Susceptibility of Vascular Smooth Muscle Cells

    Get PDF
    Although drug-eluting stents (DES) are successfully utilized for restenosis therapy, the development of local and systemic therapeutic means including nanoparticles (NP) continues. Lack of correlation between in vitro and in vivo studies is one of the major drawbacks in developing new drug delivery systems. The present study was designed to examine the applicability of the arterial explant outgrowth model, and of smooth muscle cells (SMC) cultures for prescreening of possible drugs. Elucidation of different species sensitivity (rat, rabbit, porcine and human) to diverse drugs (tyrphostins, heparin and bisphsophonates) and a delivery system (nanoparticles) could provide a valuable screening tool for further in vivo studies. The anticipated sensitivity ranking from the explant outgrowth model and SMC mitotic rates (porcine>rat>>rabbit>human) do not correlate with the observed relative sensitivity of those animals to antiproliferative therapy in restenosis models (rat≥rabbit>porcine>human). Similarly, the inhibitory profile of the various antirestenotic drugs in SMC cultures (rabbit>porcine>rat>>human) do not correlate with animal studies, the rabbit- and porcine-derived SMC being highly sensitive. The validity of in vitro culture studies for the screening of controlled release delivery systems such as nanoparticles is limited. It is suggested that prescreening studies of possible drug candidates for restenosis therapy should include both SMC cell cultures of rat and human, appropriately designed with a suitable serum

    Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling

    Get PDF
    BACKGROUND: The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. METHODS: In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. RESULTS: Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. CONCLUSION: The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis

    Short- and long-term outcomes of single bare metal stent versus drug eluting stent in nondiabetic patients with a simple de novo lesion in the middle and large vessel

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>This study was aimed to investigate the short- and long-term outcomes of percutaneous coronary intervention (PCI) between single bare metal stent (BMS) and single drug eluting stent (DES) in nondiabetic patients with a simple de novo lesion in the middle and large vessel.</p> <p>Methods</p> <p>Two hundred and thirty-five consecutive patients with a simple de novo lesion in the middle and large vessel were treated with BMS or DES in our hospital from Apr. 2004 to Dec. 2004.</p> <p>The inclusion criteria: a simple de novo lesion in the middle and large vessel, stent diameter ≥ 3.0 mm, stent length ≤ 18 mm, the exclusion criteria: diabetes mellitus, left main trunk disease and left ventricular ejection fraction ≤ 30%. Of them, there were 150 patients in BMS group and 85 patients in DES group, and the rates of lost to follow up were 6.7% and 1.2% respectively.</p> <p>Results</p> <p>BMS group had lower hypercholesteremia rate (22.0% vs 38.8%) and higher proportion of TIMI grade 0 (12% vs 1.2%) than DES group (all P < 0.05), but both groups had similar stent length (16.16 ± 2.81 mm vs 16.06 ± 2.46 mm) and stent diameter (3.85 ± 3.07 mm vs 3.19 ± 0.24 mm) after procedure, in-segment restenosis rate (0% vs 1.2%) and target lesion revascularization (TLR, 2.0% vs 2.4%) at 6-month follow-up (all P > 0.05). No difference was found in TLR (1.3% vs 1.2%, P = 1.00) and recurrent myocardial infarction (Re-MI) (0% vs 1.2%, P = 0.36), cardiac death (0.7% vs 1.2%, P = 1.00) between 1- and 3-year. So were TLR (6.0% vs 5.9%, P = 0.97), Re-MI (0% vs 2.4%, P = 0.06), cardiac death (2.0% vs 3.5%, P = 0.48) and major adverse cardiac events (MACE, 8.7% vs 10.6%, P = 0.63), cardiac death-free cumulative survival (98.7% vs 97.7%, P = 0.56), TLR-free cumulative survival (94.0% vs 94.1%, P = 0.98) and Re-MI-free cumulative survival (100% vs 97.7%, P = 0.06) at 3-year follow-up.</p> <p>Conclusion</p> <p>The single BMS has similar efficacy and safety to single DES in nondiabetic patients with a simple de novo lesion in the middle and large vessel at short- and long-term follow-up.</p
    corecore