638 research outputs found
Clima do Atlantico Tropical e impactos sobre o Nordeste (CATIN) = Climat de l'Atlantique Tropical et impacts sur le Nordeste (CATIN)
Sexuality and Affection among Elderly German Men and Women in Long-Term Relationships: Results of a Prospective Population-Based Study
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study was funded by the German Federal Ministry for Families, Senior Citizens, Women and Youth (AZ 314-1722-102/16; AZ 301-1720-295/2), the Ministry for Science, Research and Art Baden-Württemberg, and the University of Rostock (FORUN 989020; 889048)
Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract
Developing efficacious vaccines against enteric diseases is a global challenge that requires a better understanding of cellular recruitment dynamics at the mucosal surfaces. The current paradigm of T cell homing to the gastrointestinal (GI) tract involves the induction of alpha 4 beta 7 and CCR9 by Peyer's patch and mesenteric lymph node (MLN) dendritic cells (DCs) in a retinoic acid-dependent manner. This paradigm, however, cannot be reconciled with reports of GI T cell responses after intranasal (i.n.) delivery of antigens that do not directly target the GI lymphoid tissue. To explore alternative pathways of cellular migration, we have investigated the ability of DCs from mucosal and nonmucosal tissues to recruit lymphocytes to the GI tract. Unexpectedly, we found that lung DCs, like CD103(+) MLN DCs, up-regulate the gut-homing integrin alpha 4 beta 7 in vitro and in vivo, and induce T cell migration to the GI tract in vivo. Consistent with a role for this pathway in generating mucosal immune responses, lung DC targeting by i.n. immunization induced protective immunity against enteric challenge with a highly pathogenic strain of Salmonella. The present report demonstrates novel functional evidence of mucosal cross talk mediated by DCs, which has the potential to inform the design of novel vaccines against mucosal pathogens.open8
Symmetry, complexity and multicritical point of the two-dimensional spin glass
We analyze models of spin glasses on the two-dimensional square lattice by
exploiting symmetry arguments. The replicated partition functions of the Ising
and related spin glasses are shown to have many remarkable symmetry properties
as functions of the edge Boltzmann factors. It is shown that the applications
of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate
reduced complexities when the elements of the matrix satisfy certain
conditions, suggesting that the system has special simplicities under such
conditions. Using these duality and symmetry arguments we present a conjecture
on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J.
Phys.
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …
