81 research outputs found

    Socially learned attitude change is not reduced in medicated patients with schizophrenia

    Get PDF
    Schizophrenia is often associated with distinctive or odd social behaviours. Previous work suggests this could be due to a general reduction in conformity; however, this work only assessed the tendency to publicly agree with others, which may involve a number of different mechanisms. In this study, we specifically investigated whether patients display a reduced tendency to adopt other people’s opinions (socially learned attitude change). We administered a computerized conformity task, assumed to rely on reinforcement learning circuits, to 32 patients with schizophrenia or schizo-affective disorder and 39 matched controls. Each participant rated 153 faces for trustworthiness. After each rating, they were immediately shown the opinion of a group. After approximately 1 hour, participants were unexpectedly asked to rate all the faces again. We compared the degree of attitude change towards group opinion in patients and controls. Patients presented equal or more social influence on attitudes than controls. This effect may have been medication induced, as increased conformity was seen with higher antipsychotic dose. The results suggest that there is not a general decline in conformity in medicated patients with schizophrenia and that previous findings of reduced conformity are likely related to mechanisms other than reinforcement based social influence on attitudes

    Abnormal Frontostriatal Activity During Unexpected Reward Receipt in Depression and Schizophrenia: Relationship to Anhedonia.

    Get PDF
    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.Supported by a MRC Clinician Scientist award (G0701911), a Brain and Behaviour Research Foundation Young Investigator, and an Isaac Newton Trust award to Dr Murray; an award to Dr Segarra from the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union; by the University of Cambridge Behavioural and Clinical Neuroscience Institute, funded by a joint award from the Medical Research Council and Wellcome Trust (G1000183 and 093875/Z/10Z respectively); by awards from the Wellcome Trust (095692) and the Bernard Wolfe Health Neuroscience Fund to Professor Fletcher, and by awards from the Wellcome Trust Institutional Strategic Support Fund (097814/Z/11) and Cambridge NIHR Biomedical Research Centre. The authors are grateful for the help of clinical staff in CAMEO, in the Cambridge Rehabilitation and Recovery service and Pathways, and in the Cambridge IAPT service, for help with participant recruitment.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2015.37

    Pavlovian Reward Prediction and Receipt in Schizophrenia: Relationship to Anhedonia

    Get PDF
    Reward processing abnormalities have been implicated in the pathophysiology of negative symptoms such as anhedonia and avolition in schizophrenia. However, studies examining neural responses to reward anticipation and receipt have largely relied on instrumental tasks, which may confound reward processing abnormalities with deficits in response selection and execution. 25 chronic, medicated outpatients with schizophrenia and 20 healthy controls underwent functional magnetic resonance imaging using a Pavlovian reward prediction paradigm with no response requirements. Subjects passively viewed cues that predicted subsequent receipt of monetary reward or non-reward, and blood-oxygen-level-dependent signal was measured at the time of cue presentation and receipt. At the group level, neural responses to both reward anticipation and receipt were largely similar between groups. At the time of cue presentation, striatal anticipatory responses did not differ between patients and controls. Right anterior insula demonstrated greater activation for nonreward than reward cues in controls, and for reward than nonreward cues in patients. At the time of receipt, robust responses to receipt of reward vs. nonreward were seen in striatum, midbrain, and frontal cortex in both groups. Furthermore, both groups demonstrated responses to unexpected versus expected outcomes in cortical areas including bilateral dorsolateral prefrontal cortex. Individual difference analyses in patients revealed an association between physical anhedonia and activity in ventral striatum and ventromedial prefrontal cortex during anticipation of reward, in which greater anhedonia severity was associated with reduced activation to money versus no-money cues. In ventromedial prefrontal cortex, this relationship held among both controls and patients, suggesting a relationship between anticipatory activity and anhedonia irrespective of diagnosis. These findings suggest that in the absence of response requirements, brain responses to reward receipt are largely intact in medicated individuals with chronic schizophrenia, while reward anticipation responses in left ventral striatum are reduced in those patients with greater anhedonia severity

    Chronic pain self-management for older adults: a randomized controlled trial [ISRCTN11899548]

    Get PDF
    BACKGROUND: Chronic pain is a common and frequently disabling problem in older adults. Clinical guidelines emphasize the need to use multimodal therapies to manage persistent pain in this population. Pain self-management training is a multimodal therapy that has been found to be effective in young to middle-aged adult samples. This training includes education about pain as well as instruction and practice in several management techniques, including relaxation, physical exercise, modification of negative thoughts, and goal setting. Few studies have examined the effectiveness of this therapy in older adult samples. METHODS/DESIGN: This is a randomized, controlled trial to assess the effectiveness of a pain self-management training group intervention, as compared with an education-only control condition. Participants are recruited from retirement communities in the Pacific Northwest of the United States and must be 65 years or older and experience persistent, noncancer pain that limits their activities. The primary outcome is physical disability, as measured by the Roland-Morris Disability Questionnaire. Secondary outcomes are depression (Geriatric Depression Scale), pain intensity (Brief Pain Inventory), and pain-related interference with activities (Brief Pain Inventory). Randomization occurs by facility to minimize cross-contamination between groups. The target sample size is 273 enrolled, which assuming a 20% attrition rate at 12 months, will provide us with 84% power to detect a moderate effect size of .50 for the primary outcome. DISCUSSION: Few studies have investigated the effects of multimodal pain self-management training among older adults. This randomized controlled trial is designed to assess the efficacy of a pain self-management program that incorporates physical and psychosocial pain coping skills among adults in the mid-old to old-old range

    Epilepsy Caused by an Abnormal Alternative Splicing with Dosage Effect of the SV2A Gene in a Chicken Model

    Get PDF
    Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans

    Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin

    Get PDF
    BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells

    Targeted plant improvement through genome editing: from laboratory to field

    Get PDF
    This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.European Cooperation in Science and Technology (COST) CA18111info:eu-repo/semantics/publishedVersio

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Related to Anxiety: Arbitrarily Applicable Relational Responding and Experimental Psychopathology Research on Fear and Avoidance

    Get PDF
    Humans have an unparalleled ability to engage in arbitrarily applicable relational responding (AARR). One of the consequences of this ability to spontaneously combine and relate events from the past, present, and future may, in fact, be a propensity to suffer. For instance, maladaptive fear and avoidance of remote or derived threats may actually perpetuate anxiety. In this narrative review, we consider contemporary AARR research on fear and avoidance as it relates to anxiety. We first describe laboratory-based research on the emergent spread of fear- and avoidance-eliciting functions in humans. Next, we consider the validity of AARR research on fear and avoidance and address the therapeutic implications of the work. Finally, we outline challenges and opportunities for a greater synthesis between behavior analysis research on AARR and experimental psychopathology
    corecore