132 research outputs found

    Gamification for health promotion: systematic review of behaviour change techniques in smartphone apps

    Get PDF
    Funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical, Research Council and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged

    Prognostic value of estimated glomerular filtration rate in hospitalised older patients (over 65) with COVID-19 : a multicentre, European, observational cohort study

    Get PDF
    Acknowledgements: COPE Team Members (collaborators). Funding: No funding declared for this study. The Study was sponsored by Cardiff University who had no role on the study design, analysis or interpretation of the findings. BC is partially supported by the NIHR Maudsley Biomedical Research Centre at South London Maudsley NHS Foundation Trust, and King's College London. EAR received the Gwyn Seymour Scholarship from the Department of Medicine for the Elderly, NHS Grampian, as part of the Aberdeen Summer Research Scholarship Scheme, Aberdeen Clinical Academic Training Programme, University of Aberdeen.Peer reviewedPublisher PD

    'Why don't you block them?' Police officers' constructions of the ideal victim when responding to reports of interpersonal cybercrime

    Get PDF
    This chapter explores police officers' responses to reports of interpersonal cybercrime by considering their construction of the 'ideal victim'. It contributes to knowledge on police officers' perceptions of cybercrime and their support for victims. The discussion draws on Nils Christie's (1986) concept of the 'ideal victim' to explore which individuals police officers most readily give the legitimate status of victim to. Three themes are discussed including: police officers' constructions of the 'ideal victim'; their attitudes towards victims in relation to prevention of cybercrime (i.e. 'block them') and; negotiations over responsibility for dealing with the emerging issue of cybercrime. The chapter argues that police forces must advance beyond an approach which entails victim-blaming and instead recognise the centrality of social media and online spaces in individuals' lives

    Graduate entry to medicine: widening psychological diversity

    Get PDF
    At Nottingham University more than 95% of entrants to the traditional 5-year medical course are school leavers. Since 2003 we have admitted graduate entrants (GEM) to a shortened (4-year) course to 'widen access to students from more disadvantaged backgrounds'. We have recently shown that the GEM course widens academic and socio-demographic diversity of the medical student population. This study explored whether GEM students also bring psychological diversity and whether this could be beneficial. We studied: a) 217 and 96 applicants to the Nottingham 5- and 4-year courses respectively, applying in the 2002-3 UCAS cycle, and, b) 246 school leavers starting the 5-year course and 39 graduate entrants to the 4-year course in October 2003. The psychological profiles of the two groups of applicants and two groups of entrants were compared using their performance in the Goldberg 'Big 5' Personality test, the Personal Qualities Assessment (PQA; measuring interpersonal traits and interpersonal values), and the Lovibond and Lovibond measure of depression, anxiety and stress. For the comparison of the Entrants we excluded the 33 school leavers and seven graduates who took the tests as Applicants. Statistical analyses were undertaken using SPSS software (version 16.0). Graduate applicants compared to school leaver applicants were significantly more conscientious, more confident, more self controlled, more communitarian in moral orientation and less anxious. Only one of these differences was preserved in the entrants with graduates being less anxious. However, the graduate entrants were significantly less empathetic and conscientious than the school leavers. This study has shown that school leaver and graduate entrants to medical school differ in some psychological characteristics. However, if confirmed in other studies and if they were manifest in the extreme, not all the traits brought by graduates would be desirable for someone aiming for a medical career

    ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks

    Get PDF
    Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ

    ISG15 Is Critical in the Control of Chikungunya Virus Infection Independent of UbE1L Mediated Conjugation

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging alphavirus that has caused significant disease in the Indian Ocean region since 2005. During this outbreak, in addition to fever, rash and arthritis, severe cases of CHIKV infection have been observed in infants. Challenging the notion that the innate immune response in infants is immature or defective, we demonstrate that both human infants and neonatal mice generate a robust type I interferon (IFN) response during CHIKV infection that contributes to, but is insufficient for, the complete control of infection. To characterize the mechanism by which type I IFNs control CHIKV infection, we evaluated the role of ISG15 and defined it as a central player in the host response, as neonatal mice lacking ISG15 were profoundly susceptible to CHIKV infection. Surprisingly, UbE1L−/− mice, which lack the ISG15 E1 enzyme and therefore are unable to form ISG15 conjugates, displayed no increase in lethality following CHIKV infection, thus pointing to a non-classical role for ISG15. No differences in viral loads were observed between wild-type (WT) and ISG15−/− mice, however, a dramatic increase in proinflammatory cytokines and chemokines was observed in ISG15−/− mice, suggesting that the innate immune response to CHIKV contributes to their lethality. This study provides new insight into the control of CHIKV infection, and establishes a new model for how ISG15 functions as an immunomodulatory molecule in the blunting of potentially pathologic levels of innate effector molecules during the host response to viral infection

    Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    Get PDF
    The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations

    Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome

    Get PDF
    Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals

    A Cross-Species Analysis of MicroRNAs in the Developing Avian Face

    Get PDF
    Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules and transcription factors are known to play important roles in these processes, but little is known regarding the role of micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species (chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies. However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and found that the cell cycle regulator p27KIP1 is a likely target of miR-222 in frontonasal NC cells, and that the timing of this interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive analysis of miRNAs in the developing facial primordial, and in species-specific facial development
    corecore