42 research outputs found

    Associations of familial risk factors with social fears and social phobia: evidence for the continuum hypothesis in social anxiety disorder?

    Get PDF
    We examined parental psychopathology and family environment in subthreshold and DSM-IV threshold conditions of social anxiety disorder (SAD) in a representative cohort sample of 1,395 adolescents. Offspring and parental psychopathology was assessed using the DIA-X/M-CIDI; recalled parental rearing and family functioning via questionnaire. Diagnostic interviews in parents were supplemented by family history reports from offspring. The cumulative lifetime incidence was 23.07% for symptomatic SAD, and 18.38 and 7.41% for subthreshold and threshold SAD, respectively. The specific parent-to-offspring association for SAD occurred for threshold SAD only. For subthreshold and threshold SAD similar associations were found with other parental anxiety disorders, depression and substance use disorders. Parental rearing behaviour, but not family functioning, was associated with offspring threshold SAD, and although less strong and less consistent, also with subthreshold SAD. Results suggest a continued graded relationship between familial risk factors and offspring SAD. Parental psychopathology and negative parental styles may be used defining high-risk groups to assign individuals with already subthreshold conditions of SAD to early intervention programs

    The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123

    Get PDF
    Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved

    Do herbivorous minnows have “plug-flow reactor” guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations

    Get PDF
    Few investigations have empirically analyzed fish gut function in the context of chemical reactor models. In this study, digestive enzyme activities, levels of gastrointestinal fermentation products [short chain fatty acids (SCFA)], luminal nutrient concentrations, and the mass of gut contents were measured along the digestive tract in herbivorous and carnivorous minnows to ascertain whether their guts function as “plug-flow reactors” (PFRs). Four of the species, Campostoma anomalum, C. ornatum, C. oligolepis, and C. pauciradii, are members of a monophyletic herbivorous clade, whereas the fifth species, Nocomis micropogon, is a carnivore from an adjacent carnivorous clade. In the context of a PFR model, the activities of amylase, trypsin and lipase, and the concentrations of glucose, protein, and lipid were predicted to decrease moving from the proximal to the distal intestine. I found support for this as these enzyme activities and nutrient concentrations generally decreased moving distally along the intestine of the four Campostoma species. Furthermore, gut content mass and the low SCFA concentrations did not change (increase or decrease) along the gut of any species. Combined with a previous investigation suggesting that species of Campostoma have rapid gut throughput rates, the data presented here generally support Campostoma as having guts that function as PFRs. The carnivorous N. micropogon showed some differences in the measured parameters, which were interpreted in the contexts of intake and retention time to suggest that PFR function breaks down in this carnivorous species

    Substitutions in the Amino-Terminal Tail of Neurospora Histone H3 Have Varied Effects on DNA Methylation

    Get PDF
    Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3K9L or hH3K9R) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3WT). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9

    A Tale of Four “Carp”: Invasion Potential and Ecological Niche Modeling

    Get PDF
    . We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as invaders in North America via ecological niche modeling (ENM). These “carp” represent four stages of invasion of the continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established), and as such illustrate the progressive reduction of distributional disequilibrium over the history of species' invasions.We used ENM to estimate the potential distributional area for each species in North America using models based on native range distribution data. Environmental data layers for native and introduced ranges were imported from state, national, and international climate and environmental databases. Models were evaluated using independent validation data on native and invaded areas. We calculated omission error for the independent validation data for each species: all native range tests were highly successful (all omission values <7%); invaded-range predictions were predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful; distributional predictions for black carp show that large portions of eastern North America are at risk.ENMs predicted potential ranges of carp species accurately even in regions where the species have not been present until recently. ENM can forecast species' potential geographic ranges with reasonable precision and within the short screening time required by proposed U.S. invasive species legislation

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link
    corecore