835 research outputs found

    Maximal supergravity in D=10: forms, Borcherds algebras and superspace cohomology

    Full text link
    We give a very simple derivation of the forms of N=2,D=10N=2,D=10 supergravity from supersymmetry and SL(2,\bbR) (for IIB). Using superspace cohomology we show that, if the Bianchi identities for the physical fields are satisfied, the (consistent) Bianchi identities for all of the higher-rank forms must be identically satisfied, and that there are no possible gauge-trivial Bianchi identities (dF=0dF=0) except for exact eleven-forms. We also show that the degrees of the forms can be extended beyond the spacetime limit, and that the representations they fall into agree with those predicted from Borcherds algebras. In IIA there are even-rank RR forms, including a non-zero twelve-form, while in IIB there are non-trivial Bianchi identities for thirteen-forms even though these forms are identically zero in supergravity. It is speculated that these higher-rank forms could be non-zero when higher-order string corrections are included.Comment: 15 pages. Published version. Some clarification of the tex

    IIA/IIB Supergravity and Ten-forms

    Get PDF
    We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as "top-forms", require a careful analysis since in this case, as we will show, closure of the supersymmetry algebra at the linear level does not imply closure at the non-linear level. Consequently, some of the (IIA and IIB) ten-form potentials introduced in earlier work of some of us are discarded. At the same time we show that new ten-form potentials, consistent with the full non-linear supersymmetry algebra can be introduced. We give a superspace explanation of our work. All of our results are precisely in line with the predictions of the E(11) algebra.Comment: 17 page

    The general gaugings of maximal d=9 supergravity

    Full text link
    We use the embedding tensor method to construct the most general maximal gauged/massive supergravity in d=9 dimensions and to determine its extended field content. Only the 8 independent deformation parameters (embedding tensor components, mass parameters etc.) identified by Bergshoeff \textit{et al.} (an SL(2,R) triplet, two doublets and a singlet can be consistently introduced in the theory, but their simultaneous use is subject to a number of quadratic constraints. These constraints have to be kept and enforced because they cannot be used to solve some deformation parameters in terms of the rest. The deformation parameters are associated to the possible 8-forms of the theory, and the constraints are associated to the 9-forms, all of them transforming in the conjugate representations. We also give the field strengths and the gauge and supersymmetry transformations for the electric fields in the most general case. We compare these results with the predictions of the E11 approach, finding that the latter predicts one additional doublet of 9-forms, analogously to what happens in N=2, d=4,5,6 theories.Comment: Latex file, 43 pages, reference adde

    Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures

    Full text link
    We describe the conditions for extra supersymmetry in N=(2,2) supersymmetric nonlinear sigma models written in terms of semichiral superfields. We find that some of these models have additional off-shell supersymmetry. The (4,4) supersymmetry introduces geometrical structures on the target-space which are conveniently described in terms of Yano f-structures and Magri-Morosi concomitants. On-shell, we relate the new structures to the known bi-hypercomplex structures.Comment: 20 pages; v2: significant corrections, clarifications, and reorganization; v3: discussion of supersymmetry vs twisted supersymmetry added, relevant signs corrected

    Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring

    Get PDF
    We construct a zero-curvature Lax connection in a sub-sector of the superstring theory on AdS(4) x CP(3) which is not described by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet fermions associated to eight broken supersymmetries of the type IIA background are physical fields. As such, the prescription for the construction of the Lax connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4) does not do the job. So, to construct the Lax connection we have used an alternative method which nevertheless relies on the isometry of the target superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde

    Free Differential Algebras and Pure Spinor Action in IIB Superstring Sigma Models

    Full text link
    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ\lambda related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.Comment: 24 page

    Heterotic Black Horizons

    Full text link
    We show that the supersymmetric near horizon geometry of heterotic black holes is either an AdS_3 fibration over a 7-dimensional manifold which admits a G_2 structure compatible with a connection with skew-symmetric torsion, or it is a product R^{1,1} * S^8, where S^8 is a holonomy Spin(7) manifold, preserving 2 and 1 supersymmetries respectively. Moreover, we demonstrate that the AdS_3 class of heterotic horizons can preserve 4, 6 and 8 supersymmetries provided that the geometry of the base space is further restricted. Similarly R^{1,1} * S^8 horizons with extended supersymmetry are products of R^{1,1} with special holonomy manifolds. We have also found that the heterotic horizons with 8 supersymmetries are locally isometric to AdS_3 * S^3 * T^4, AdS_3 * S^3 * K_3 or R^{1,1} * T^4 * K_3, where the radii of AdS_3 and S^3 are equal and the dilaton is constant.Comment: 35 pages, latex. Minor alterations to equation (3.11) and section 4.1, the conclusions are not affecte

    Bi-harmonic superspace for N=4 d=4 super Yang-Mills

    Full text link
    We develop N=4 d=4 bi-harmonic superspace and use it to derive a novel form for the low-energy effective action in N=4 super Yang-Mills theory. We solve the N=4 supergauge constraints in this superspace in terms of analytic superfields. Using these superfields, we construct a simple functional that respects N=4 supersymmetry and scale invariance. In components, it reproduces all on-shell terms in the four-derivative part of the N=4 SYM effective action; in particular, the F^4/X^4 and Wess-Zumino terms. The latter comes out in a novel SO(3) x SO(3)-invariant form.Comment: 1+19 pages; minor corrections, references adde
    • …
    corecore