
J
H
E
P
0
5
(
2
0
1
0
)
0
6
1

Published for SISSA by Springer

Received: April 26, 2010

Accepted: May 3, 2010

Published: May 18, 2010

IIA/IIB supergravity and ten-forms

E.A. Bergshoeff,a J. Hartong,b P.S. Howe,c T. Ort́ınd and F. Riccionic

aCentre for Theoretical Physics, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
bAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,

University of Bern,

Sidlerstrasse 5, 3012 Bern, Switzerland
cDepartment of Mathematics, King’s College London,

Strand London WC2R 2LS U.K.
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1 Introduction

Supergravity theories provide important information about string theory. In particular,

the p-form fields of the supergravity multiplet are in one-to-one correspondence, via their

occurrence in the world-volume actions, with the branes of string theory provided that

supersymmetry can be maintained.1 The p-form fields with p ≤ D − 2 can be easily

predicted since they describe the physical states (or their duals) of the (D-dimensional)

supergravity theory in question. This is not the case for the potentials of rank p = D − 1

(“de-form” potentials) and rank p = D (“top-form” potentials). A well-known example of

a de-form potential is the 9-form potential [1] of massive IIA supergravity [2] that gives a

dual description of the mass parameter m present in the theory.

Ten-dimensional supergravities have been constructed a long time ago both for the

non-chiral IIA case [3–5] as well as for the chiral IIB case [6–8]. A partially “democratic”

formulation of these theories, where all the RR fields are introduced together with their

magnetic duals, was given in [9] and [10]. This was then extended to a fully democratic

formulation, including also the magnetic duals of the NS fields for both the IIA [11] and

IIB [12] cases. This analysis also included a fairly complete discussion of the de-form and

top-form potentials for IIA and IIB. A superspace interpretation of the latter case was

given in [13].

It is the purpose of this note to reconsider the results of [11–13]. The reason for this

is the following. In [12] we showed that an SU(1, 1)-doublet of ten-form potentials could

1An exception are those p-form fields that under supersymmetry do not transform into the gravitino.

An example of this is the 8-form dual of the IIA dilaton, see the last line of eq. (3.4).
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be introduced, consistently with the lowest-order IIB supersymmetry algebra, with only

trivial Abelian gauge transformations:

δAα
10 = dΛα

9 , α = 1, 2. (1.1)

In contrast, both E11 [14] and IIB superspace [13] considerations predict a doublet ten-

form potential that forms a non-trivial gauge algebra with the other p-forms of the theory.

Moreover, as we will show in this paper, IIB superspace does not allow for two doublets. We

will show that the different inconsistencies are resolved as follows. By performing an explicit

check of the full non-linear supersymmetry algebra, we show that, whereas at the lowest-

order level two doublets of ten-form potentials are allowed, this is no longer the case at the

non-linear level: surprisingly, we find that the trivial doublet (1.1) is not consistent with

the full IIB supersymmetry algebra. The same result applies to the IIA case. This is a rare

example of a case that a result, established at the lowest-order level of the supersymmetry

algebra, cannot be extended to the full non-linear level. It relies on the fact that top-

forms are special in the sense that a general coordinate transformation can be rewritten

as a gauge transformation. Consequently, when closing the algebra at the lowest order in

fermions one “only” has to make sure that the algebra closes up to gauge transformations

while for the lower rank potentials one needs both gauge transformations and g.c.t.’s.

On the other hand, IIB superspace and E11 considerations do predict the existence of

a doublet of ten-form potentials with a non-trivial gauge-symmetry structure which were

not found in [12]. We show that this doublet was missed because of a specific identity

that was not used in the calculations. Here, we point out this identity and show that the

supersymmetry algebra can now indeed be closed. For the IIA case we establish a similar

result: we show that the trivial ten-form found in [11] does not persist at the non-linear

level. Instead, by using a similar non-trivial identity as in the IIB case, we show that a new

ten-form potential is allowed, with a non-trivial gauge algebra structure, that is consistent

with the full non-linear IIA supersymmetry algebra.

This paper is organised as follows. In section 2 we first discuss the ten-form potentials

of IIB supergravity. In section 3 we give a similar discussion of the IIA case. Finally, in

section 4 we give our conclusions.

2 The top-forms of IIB supergravity

In this section we want to reconsider the analysis of ten-form potentials present in the IIB

supergravity multiplet that was performed in [12]. We will first review the supersymmetry

algebra and the algebra of gauge transformations for all the propagating fields. We will then

consider in more detail the 10-forms. Finally, we will review the superspace results of [13].

2.1 IIB supergravity

The propagating fields of IIB supergravity and their magnetic duals are the vielbein eµ
a,

two scalars parametrising the symmetric manifold SU(1, 1)/U(1) and described in terms

of the matrix V α
± , where ± denotes the U(1) charge and α is a doublet index of SU(1, 1),

a doublet of 2-forms Aα
µ1µ2

and a self-dual 4-form Aµ1...µ4
that is a singlet of SU(1, 1),
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together with a doublet of 6-forms Aα
µ1...µ6

and a triplet of 8-forms Aαβ
µ1...µ8

. The gauge

transformations of the form fields can be written in an abelian basis in which all gauge

transformations commute, and in particular one gets

δAα
µ1µ2

= 2∂[µ1
Λα

µ2] ,

δAµ1...µ4
= 4∂[µ1

Λµ2...µ4] −
i
4ǫγδΛ

γ

[µ1
F δ

µ2...µ4]
,

δAα
µ1...µ6

= 6∂[µ1
Λα

µ2...µ6]
− 8Λα

[µ1
Fµ2...µ6] −

160
3 Fα

[µ1...µ3
Λµ4...µ6] ,

δAαβ
µ1...µ8

= 8∂[µ1
Λ

(αβ)
µ2...µ8]

+ 1
2F

(α
[µ1...µ7

Λ
β)
µ8] −

21
2 F

(α
[µ1...µ3

Λ
β)
µ4...µ8]

, (2.1)

where the corresponding gauge invariant field strengths are

Fα
µ1...µ3

= 3∂[µ1
Aα

µ2µ3] ,

Fµ1...µ5
= 5∂[µ1

Aµ2...µ5] + 5i
8 ǫαβA

α
[µ1µ2

F β

µ3...µ5]
,

Fα
µ1...µ7

= 7∂[µ1
Aα

µ2...µ7]
+ 28Aα

[µ1µ2
Fµ3...µ7] −

280
3 Fα

[µ1...µ3
Aµ4...µ7] ,

Fαβ
µ1...µ9

= 9∂[µ1
Aαβ

µ2...µ9]
+ 9

4F
(α
[µ1...µ7

A
β)
µ8µ9]

− 63
4 F

(α
[µ1...µ3

A
β)
µ4...µ9]

. (2.2)

The supersymmetry transformations of these gauge fields

δAα
µ1µ2

= δFA
α
µ1µ2

,

δAµ1...µ4
= δFAµ1...µ4

− 3i
8 ǫγδA

γ
[µ1µ2

δFA
δ
µ2µ4] ,

δAα
µ1...µ6

= δFA
α
µ1...µ6

+ 40A[µ1...µ4
δFA

α
µ5µ6] − 20δFA[µ1...µ4

Aα
µ5µ6] ,

δAαβ
µ1...µ8

= δFA
αβ
µ1...µ8

+ 21
4 A

(α
[µ1...µ6

δFA
β)
µ7µ8] −

7
4A

(α
[µ1µ2

δFA
β)
µ3...µ8]

(2.3)

were derived in [12]. They have a particularly simple form, as pointed out in [11], in which

all terms are at most linear in the gauge fields. Here we denote with δF the part of the

supersymmetry transformation that only involves fermi bilinears, that are [12]

δFA
α
µ1µ2

= 4iV α
− ǭ

∗γ[µ1
ψµ2] + V α

− ǭγµ1µ2
λ+ c.c. ,

δFAµ1...µ4
= ǭγ[µ1...µ3

ψµ4] + c.c. ,

δFA
α
µ1...µ6

= 12V α
− ǭ

∗γ[µ1...µ5
ψµ6] + iV α

− ǭγµ1...µ6
λ+ c.c. ,

δFA
αβ
µ1...µ8

= 8V
(α
+ V

β)
− ǭγ[µ1...µ7

ψµ8] + iV α
−V

β
− ǭ

∗γµ1...µ8
λ+ c.c. , (2.4)

where all conventions are as in [7].

The commutators of two supersymmetry transformations on the fields and dual fields

of type IIB were analysed in [12] at lowest order in the fermions. Given the transformations

of eq. (2.3), together with the transformations of the scalars and the vielbein

δV α
+ = V α

− ǭ
∗λ ,

δeµ
a = iǭγaψµ + c.c. (2.5)

and the transformations of the fermions (without including cubic fermi terms)

δψµ = Dµǫ+ i
480Fµν1...ν4

γν1...ν4ǫ+ 1
96G

νρσγµνρσǫ
∗
− 3

32Gµνργ
νρǫ∗ ,

δλ = iPµγ
µǫ∗ − i

24Gµνργ
µνρǫ , (2.6)
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where

Pµ = −ǫαβV
α
+ ∂µV

β
+ (2.7)

and

Gµνρ = −ǫαβV
α
+F

β
µνρ , (2.8)

the commutators of two supersymmetry transformations on the bosons close on all the

local symmetries of the theory, including the gauge transformations of eq. (2.1), provided

that the duality relations

Fα
µ1...µ7

= − i
3ǫµ1...µ7ν1...ν3

V
(α
+ V

β)
− ǫβγF

γ,ν1...ν3 ,

Fαβ
µ1...µ9

= iǫµ1...µ9

σ[V α
+V

β
+P

∗
σ − V α

−V
β
−Pσ] (2.9)

hold, together with the self-duality condition for the 5-form field-strength. What will be

crucial in the following are the expressions for the gauge parameters of the gauge transfor-

mations resulting from the commutators of two supersymmetry transformations that are

purely fermi bilinears, that are

Λα
µ = −2iV α

− ǭ
∗
2γµǫ1 + c.c. ,

Λµνρ = −1
4 ǭ2γµνρǫ1 + c.c. ,

Λα
µ1...µ5

= −2V α
− ǭ

∗
2γµ1...µ5

ǫ1 + c.c. ,

Λαβ
µ1...µ7

= −V
(α
+ V

β)
− ǭ2γµ1...µ7

ǫ1 + c.c. . (2.10)

In [7] the closure of the supersymmetry algebra on the scalars, the vielbein, the 2-forms

and the 4-form, as well as on the fermions, was obtained at all orders in the fermions.

Given that the supersymmetry algebra closes on-shell, this analysis was used to derive the

field equations requiring the closure of the algebra on the fermi fields. Here we want to

perform a similar analysis for all the bosonic fields and their duals. For simplicity we will

only consider terms that are quadratic in the gravitino, that is we will ignore all the higher

order fermi terms containing the spinor λ. The advantage of this is that the modification of

the supersymmetry transformations of eq. (2.6) and of the duality relations of eq. (2.9) are

all determined by supercovariance as far as these terms are concerned. As it turns out, this

analysis is sufficient to determine all the 10-forms that are compatible with supersymmetry,

as will be shown in the next subsection.

The expressions for the supercovariant spin connection and field strengths (only con-

sidering terms quadratic in the gravitino) are

ω̂µab = ωµab + ieνae
ρ
b[ψ̄µγ[νψρ] + ψ̄[νγρ]ψµ + ψ̄[νγ|µ|ψρ]] ,

F̂α
µ1...µ3

= Fα
µ1...µ3

+ [−6iV α
− ψ̄

∗
[µ1
γµ2

ψµ3] + c.c.] ,

F̂µ1...µ5
= Fµ1...µ5

− 5ψ̄[µ1
γµ2...µ4

ψµ5] ,

F̂α
µ1...µ7

= Fα
µ1...µ7

+ [−42V α
− ψ̄

∗
[µ1
γµ2...µ6

ψµ7] + c.c.] ,

F̂αβ
µ1...µ9

= Fαβ
µ1...µ9

− 72V
(α
+ V

β)
− ψ̄[µ1

γµ2...µ8
ψµ9] . (2.11)
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The terms of the form ǫ2ψ2 resulting in the commutators of two supersymmetry trans-

formations on the form fields have two sources. The first are the terms, that we schemat-

ically write as [δF , δF ]A, resulting from considering only the purely fermionic term in the

supersymmetry variation of the form field, that is only the first term on the right hand side

of each line of eq. (2.3). The resulting ǫ2ψ2 terms can be immediately read by simply substi-

tuting the supercovariant quantities of eq. (2.11) to the bosonic result. The second source

comes from the purely fermionic variation of the form fields in the AδFA terms in eq. (2.3),

that is the terms δFAδFA. These can be immediately written using eq. (2.4), and in order

to compare them to the previous ones one has to perform some Fierz rearrangements, using

the Fierz identity

ξχ̄ = −
1

16
γµ(χ̄γµξ) +

1

96
γµνρ(χ̄γ

µνρξ) −
1

3840
γµνρστ (χ̄γµνρστ ξ) . (2.12)

Here χ and ψ are two generic ten-dimensional spinors of the same chirality.

The final result is that the commutator of two supersymmetry transformations on the

bosons generates a supersymmetry transformation of parameter

ζ = −ξµψµ , (2.13)

where

ξµ = iǭ2γµǫ1 + c.c. . (2.14)

This is the supersymmetry parameter of [7] as far as the gravitino terms are concerned.

2.2 Ten-form potentials

We now want to extend this analysis to the 10-forms. In [12] it was shown that the

supersymmetry algebra closes at lowest order in the fermions of a quadruplet and a doublet

of 10-forms whose supersymmetry transformations are

δAαβγ
µ1...µ10

= −20
3 V

(α
+ V β

−V
γ)
− ǭ∗γ[µ1...µ9

ψµ10] − iV
(α
+ V β

−V
γ)
− ǭγµ1...µ10

λ+ c.c.

−12A
(αβ

[µ1...µ8
δFA

γ)
µ9µ10] + 3A

(α
[µ1µ2

δFA
βγ)
µ3...µ10] ,

δAα
µ1...µ10

= 20iV α
− ǭ

∗γ[µ1...µ9
ψµ10] + V α

− ǭγµ1...µ10
λ+ c.c. , (2.15)

where the quadruplet has a non-trivial gauge transformation

δAαβγ
µ1...µ10

= 10∂[µ1
Λ

(αβγ)
µ2...µ10]

− 2
3F

(αβ

[µ1...µ9
Λ

γ)
µ10] + 32F

(α
[µ1...µ3

Λ
βγ)
µ4...µ10] (2.16)

while the gauge transformation of the doublet is trivial:

δAα
µ1...µ10

= 10∂[µ1
Λα

µ2...µ10]
. (2.17)

It turns out that there is an additional doublet of 10-forms Ãµ1...µ10
on which the

supersymmetry algebra closes at lowest order in the fermions. The supersymmetry trans-

formation of this additional 10-form is

δÃα
10 = −V α

− ǭγµ1...µ10
λ+ c.c.+ 9iǫβγA

β
[µ1µ2

δFA
γα
µ3...µ10] + 252A[µ1 ...µ4

δFA
α
µ5...µ10]

−378Aα
[µ1...µ6

δFAµ7...µ10] + 36iǫβγA
αβ
[µ1...µ8

δFA
γ
µ9µ10] (2.18)
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while its gauge transformation is

δÃα
µ1...µ10

= 10∂[µ1
Λµ2...µ10] + 2iǫβγΛβ

[µ1
F γα

µ2...µ10]
+ 144Λ[µ1...µ3

Fα
µ4...µ10]

−2268
5 Λα

[µ1...µ5
Fµ6...µ10] + 96iǫβγF

β
[µ1...µ3

Λγα
µ4...µ10] . (2.19)

In order to prove that the commutator of two supersymmetry transformations of eq. (2.18)

closes on the gauge transformations of eq. (2.19) one makes use of the crucial identities

F[µ1...µ5
Λα

µ6...µ10] = 0 ,

iǫβγΛαβ
[µ1...µ7

F γ
µ8...µ10] = −2Λ[µ1...µ3

Fα
µ4...µ10]

,

2iV α
−P[µ1

ǭ2γµ2...µ10]ǫ
∗
1 + 2iV α

+P
∗
[µ1
ǭ∗2γµ2...µ10]ǫ1 = iǫβγF

αβ
[µ1...µ9

Λγ
µ10] , (2.20)

which are a consequence of the duality relations of eq. (2.9) and of the properties of the

gamma matrices in ten dimensions. The reason why this additional doublet of 10-forms was

missed in [12] is because these identities were not used in those calculations. Of course, the

supersymmetry algebra closes at lowest order in the fermions on any linear combinations

of the trivial and the non-trivial doublet, and combining the non-trivial doublet with the

trivial one does not change the form of the gauge transformations of eq. (2.19).

We now show that the non-trivial IIB doublet of 10-forms is precisely the one predicted

by E11.
2 The E11 analysis of the generators that is relevant for the IIB theory was per-

formed originally in [15], while all the form generators were classified in [14]. The algebra

involving all the form generators associated to the propagating form fields and the quadru-

plet of 10-form generators was derived in [16], where it was also shown that the symmetry

of the group element exactly reproduces the gauge transformations of the corresponding

fields as obtained in [12]. Including also the doublet of 10-form generators this algebra is

[Rµ1µ2

α , Rµ3µ4

β ] = iǫαβR
µ1...µ4 [Rµ1µ2

α , Rµ3...µ6] = Rµ1...µ6

α [Rµ1µ2

α , Rµ3...µ8

β ] = Rµ1...µ8

αβ

[Rµ1...µ4, Rµ5...µ10

α ] = Rµ1...µ10

α [Rµ1µ2

α , Rµ3...µ10

βγ ] = Rµ1...µ10

αβγ + 2
3 iǫα(βR

µ1...µ10

γ) (2.21)

with all the other commutators vanishing. One then considers the group element

g = eB
αβγ
µ1...µ10

R
µ1...µ10
αβγ eB

α
µ1...µ10

R
µ1...µ10
α ...eB

α
µ1µ2

R
µ1µ2
α , (2.22)

where the B’s are the fields associated to each generator. Requiring symmetry under global

transformations of the form g → g0g gives the global transformations of the fields, and in

particular for the fields up to the 10-forms one gets

δBα
µ1µ2

= aα
µ1µ2

,

δBµ1...µ4
= aµ1...µ4

+ i
2ǫαβa

α
[µ1µ2

Bβ
µ3µ4] ,

δBα
µ1...µ6

= aα
µ1...µ6

+ aα
[µ1µ2

Bµ3...µ6] + i
6ǫβγa

β
[µ1µ2

Bγ
µ3µ4

Bα
µ5µ6] ,

δBαβ
µ1...µ8

= aαβ
µ1...µ8

+ a
(α
[µ1µ2

B
β)
µ3...µ8]

+ i
24ǫγδa

γ
[µ1µ2

Bδ
µ3µ4

Bα
µ5µ6

Bβ
µ7µ8] . (2.23)

2We ignore here the ambiguity related to the fact that one can always add a trivial IIB doublet (times

a constant) to a non-trivial IIB doublet. The same applies to the IIA case.
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One then recovers the gauge transformations of the fields by promoting the constant shifts

to gauge transformations:

aµ1...µn = n∂[µ1
Σµ2...µn] . (2.24)

The algebraic construction that in general leads to the gauge transformations starting

from the global E11 transformations was derived in [17]. One can show that after field

redefinitions and redefinitions of the gauge parameters, the transformations of eq. (2.23)

coincide with those of eq. (2.1). Similarly, one can determine from E11 the transformation of

the 10-form doubletBα
µ1...µ10

. After reinterpreting the global shifts as gauge transformations

as in eq. (2.24) one obtains

δBα
µ1...µ10

= 10∂[µ1
Σα

µ2...µ10]
+ 4∂[µ1

Σµ2...µ4
Bα

µ5...µ10]
+ 4

3 iǫβγ∂[µ1
Σβ

µ2
Bγα

µ3...µ10]

+∂[µ1
Σα

µ2
Bµ3...µ6

Bµ7...µ10] + i
3ǫβγ∂[µ1

Σβ
µ2
Bγ

µ3µ4
Bα

µ5µ6
Bµ7...µ10] . (2.25)

After field redefinitions and redefinitions of the gauge parameters one can show that this

gauge transformation coincides with the one in eq. (2.19). This thus shows that the new

doublet of 10-forms Ãα
µ1...µ10

is the one predicted by E11.

We now consider the commutator of two supersymmetry transformations on the 10-

forms of IIB supergravity, only considering the terms that do not contain the spinor λ.

For the case of the quadruplet, the result is exactly as for the lower rank forms discussed

in the previous subsection, and the commutator of two supersymmetry transformations

generates a supersymmetry transformation with parameter as given in eq. (2.13). The

picture changes when one considers the two doublets. One can immediately show using

the ten-dimensional Fierz identities of eq. (2.12) that the supersymmetry algebra does

not close on both the trivial doublet transforming as in eq. (2.15) and on the non-trivial

doublet transforming as in eq. (2.18). Only for a particular combination of these two fields

one obtains closure, and the result is that the only doublet of 10-forms compatible with

supersymmetry is

Ãα
µ1...µ10

− 23
16A

α
µ1...µ10

. (2.26)

This analysis thus produces the intriguing result that for top-forms the closure of the su-

persymmetry algebra at lowest order in the fermions does not in general guarantee actual

closure at the full level. As we will see in the next section, the same result applies to the

IIA case.

2.3 IIB superspace

The superspace version of this story is of course equivalent to the component one just

described, but the organisation of the calculation differs somewhat. In the superspace

approach it is preferable to work with tensorial quantities, rather than gauge potentials,

so that supersymmetry as well as gauge invariance is manifest at every step. On the other

hand, the introduction of field strengths in the odd (spinorial) directions as well as the even

(spacetime) ones, and the fact that each field is now a superfield, means that constraints

must be imposed in order to get rid of the non-physical fields. The procedure is therefore

to impose these on the various field strengths and then to check that they are consistent

– 7 –
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by examining the Bianchi identities. It is actually rather easy to find the constraints when

one knows the field content of the theory simply by using dimensional analysis. A feature

of this approach is that we can examine the field strength even for a ten-form potential

because an eleven-form need not vanish in the superspace context due to the fact that the

odd basis differential forms are commutative.

For the IIB case, the full theory was written down in terms of the usual physical fields

in [8] and then extended to include the dual forms in [18]; later, in [13], all of these plus the

eleven-form field strengths were included. The full list of Bianchi identities and the non-

vanishing components of all of the forms can be found there; here we shall just re-examine

the eleven-forms. There is a quadruplet Fαβγ
11 which obeys the Bianchi

dFαβγ
11 = F

(α
3 F

βγ)
9 , (2.27)

and a doublet, Fα
11, for which the Bianchi identity is

dFα
11 =

4

23

(

ǫβγF
β
3 F

γα
9 −

3

4
F5F

α
7

)

. (2.28)

Any n-form in superspace can be split up into a sum of (p, q)-forms, where p(q) denotes

the number of even (odd) indices and where n = p + q.3 For an n-form field strength F ,

the top component, Fn,0, has dimension one, so that the only other ones which can be

non-zero are Fn−2,2 and Fn−1,1 which have dimensions zero and one-half respectively. In a

U(1) frame (reached by means of the scalar field matrix V acting on the SL(2, R) indices)

the dimension-zero component will be a gamma-matrix times some internal invariant if

appropriate, while the dimension one-half component will be proportional to the dilatino.

It will be useful to think of the symmetric p-index gamma-matrices as (p, 2) forms, written

γp,2, and the product of a gamma-matrix with the fermion as a (p, 1)-form, written (γ ·λ)p,1.

For the eleven-forms the dimension-zero and one-half components are precisely of this type;

the full details can be found in [13].

Now we ask if there can be a gauge-trivial doublet of eleven-forms, i.e. an Fα
11 satisfying

dFα
11 = 0. The first non-trivial component of this identity, at dimension zero, can be written

t0F
α
9,2 = 0 , (2.29)

where t0 denotes an algebraic operation formed by contracting the even-vector index of

the dimension-zero torsion, which is proportional to a gamma-matrix regarded as an even-

vector-valued (0, 2)-form, with one of the even indices of the form being operated on, and

where all the remaining odd indices are symmetrised. It is quite easy to see that there is

no non-trivial gamma-matrix identity that satisfies (2.29), so that Fα
9,2 = 0. But then this

implies, using the dimension one-half Bianchi, that Fα
10,1 is also zero, and so the whole of

F must vanish.

The component results can be recovered from superspace by observing that a super-

symmetry transformation can be regarded as a super-diffeomorphism with an odd vector

field whose leading component (in an odd coordinate expansion) is identified with the local

3Note that this splitting is invariant with respect to a class of preferred non-coordinate basis frames.
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supersymmetry parameter in spacetime. It is not difficult to show that the transforma-

tion of a p-form potential is given by the interior product of this vector field with the field

strength Fp+1. The λ terms in the variation come from Fp,1 while the gravitino terms come

from Fp,2. The latter arises because one has to go from a preferred basis to a coordinate

basis by means of the supervielbein, one component of which is the gravitino.

3 The top-forms of IIA supergravity

In this section we repeat the same analysis for the IIA case. In [11] the supersymmetry

transformations for all the forms of the IIA theory were derived, and the closure of the

supersymmetry algebra was checked at lowest order in the fermions. This analysis was per-

formed also in the case of non-vanishing Romans mass, and apart from all the propagating

forms, it was also done for the 9-form potential, whose field strength is dual to the Romans

mass, and for a non-trivial 10-form and a trivial one. In this section we will reconsider

the analysis of the 10-forms, and for simplicity we will consider the case of vanishing Ro-

mans mass. We will first review the analysis for all the forms up to the 10-forms. We will

then show that an additional non-trivial 10-form can be included, while the closure of the

supersymmetry algebra at all orders in the fermions selects two 10-forms out of the three

that are a priori compatible with supersymmetry at lowest order. Finally, we will perform

the same analysis in superspace.

3.1 IIA supergravity

We follow the notation of [9], which is the one also used in [11]. The supersymmetry trans-

formations are thus expressed in the string frame, and we use the mostly plus signature, as

opposed to the one used in the previous section. We denote with C the RR fields and with

B the NS-NS fields. The RR fields are forms of odd rank, while the NS-NS fields are the

2-form, the 6-form and the 8-form. With respect to ref. [11], we perform field redefinitions

for the 6-form and the 8-form, so that their gauge transformations are in the abelian basis

as is the case for all the other fields. The resulting gauge transformations are

δCµ1...µ2n−1
= (2n − 1)∂[µ1

Λµ2..µ2n−1] −

(

2n− 1

3

)

H[µ1...µ3
Λµ4...µ2n−1] ,

δBµ1µ2
= 2∂[µ1

Σµ2] ,

δBµ1...µ6
= 6∂[µ1

Σµ2...µ6] −
15
2 G[µ1µ2

Λµ3...µ6] + 15
2 G[µ1...µ4

Λµ5µ6] −
1
6Gµ1...µ6

Λ ,

δBµ1...µ8
= 8∂[µ1

Σµ2...µ8] + 21G[µ1µ2
Λµ3...µ8] − 35G[µ1 ...µ4

Λµ5...µ8] + 7G[µ1...µ6
Λµ7µ8]

+28H[µ1...µ3
Σµ4...µ8] , (3.1)

while the corresponding field strengths are

Gµ1...µ2n
= 2n∂[µ1

Cµ2...µ2n] −

(

2n

3

)

H[µ1...µ3
Cµ4...µ2n] ,

Hµ1...µ3
= 3∂[µ1

Bµ2µ3] ,

Hµ1...µ7
= 7∂[µ1

Bµ2...µ7] + 21
2 G[µ1µ2

Cµ3...µ7] −
35
2 G[µ1...µ4

Cµ5...µ7] + 7
2G[µ1...µ6

Cµ7] ,

Hµ1...µ9
= 9∂[µ1

Bµ2...µ9] − 27G[µ1µ2
Cµ3...µ9] + 63G[µ1...µ4

Cµ5...µ9] − 21G[µ1...µ6
Cµ7...µ9]

+42B[µ1...µ6
Hµ7...µ9] . (3.2)
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As in the IIB case, in this basis the supersymmetry transformations have a particularly

simple form, in which all terms are at most linear in the form fields. The result is

δCµ1...µ2n−1
= δFCµ1...µ2n−1

+

(

2n− 1

2

)

C[µ1...µ2n−3
δFBµ2n−2µ2n−1] ,

δBµ1µ2
= δFBµ1µ2

,

δBµ1...µ6
= δFBµ1...µ6

+ 3C[µ1...µ5
δFCµ6] − 10C[µ1...µ3

δFCµ4...µ6] + 3C[µ1
δFCµ2...µ6] ,

δBµ1...µ8
= δFBµ1...µ8

− 6C[µ1...µ7
δFCµ8] + 28C[µ1...µ5

δFCµ6...µ8] − 14C[µ1...µ3
δFCµ4...µ8]

−14B[µ1...µ6
δFBµ7µ8] , (3.3)

where as in the previous section we denote with δF the part of the supersymmetry trans-

formation that only involves fermi bilinears, that is

δFCµ1...µ2n−1
= −(2n− 1)ǭγ[µ1...µ2n−2

γn
11ψµ2n−1] + 1

2 ǭγ
n
11γµ1...µ2n−1

λ ,

δFBµ1µ2
= 2ǭγ11γ[µ1

ψµ2] ,

δFBµ1...µ6
= 6e−2φǭγ[µ1...µ5

ψµ6] − e−2φǭγµ1...µ6
λ ,

δFBµ1...µ8
= 1

2e
−2φǭγµ1...µ8

γ11λ . (3.4)

Given the supersymmetry transformations of the form fields of eq. (3.3), together with

the supersymmetry transformations of the vielbein and the dilaton

δeµ
a = ǭγaψµ ,

δφ = 1
2 ǭλ , (3.5)

as well as the supersymmetry transformations of the fermions at lowest order in the

fermions,

δψµ = Dµǫ+ 1
8HµνρΓ

νρΓ11ǫ+ 1
16e

φGνρΓ
νρΓµΓ11ǫ+ 1

8·4!e
φGµ1...µ4

Γµ1...µ4Γµǫ ,

δλ = ∂µφΓµǫ− 1
12HµνρΓ11Γ

µνρǫ+ 3
8e

φGµνΓ11Γ
µνǫ+ 1

4·4!e
φGµ1...µ4

Γµ1...µ4ǫ , (3.6)

it was shown in [11] that the supersymmetry algebra closes at lowest order in the fermi

fields, provided that the following duality relations hold:

Gµ1...µ2n
= (−1)n 1

(10−2n)! ǫµ1...µ2n

µ2n+1...µ10Gµ2n+1...µ10
,

Hµ1...µ7
= 1

6e
−2φǫµ1...µ7µνρH

µνρ ,

Hµ1...µ9
= e−2φǫµ1...µ9ρ∂

ρφ . (3.7)

The fact that we are considering the massless theory in this paper implies in particular

that G10 vanishes as can be seen from the first equation. The closure of the supersymmetry

algebra implies in particular that the commutator of two supersymmetry transformations

produces the gauge transformations of eq. (3.1). What will be needed in the following is the

explicit expression for the purely fermionic parts of the corresponding gauge parameters.

These are

Λµ1...µ2n
= −e−φǭ2γµ1...µ2n

γn+1
11 ǫ1 ,

Σµ = −ǭ2γ11γµǫ1 ,

Σµ1...µ5
= −e−2φǭ2γµ1...µ5

ǫ1 . (3.8)

– 10 –



J
H
E
P
0
5
(
2
0
1
0
)
0
6
1

Note in particular that there is no purely fermionic part in the gauge parameter of the

8-form potential.

The analysis of [11] can be extended to include the quartic fermi terms. In particular, if

one restricts one’s attention to all terms that do not contain the spinor λ, then the modifi-

cation of the supersymmetry transformations of the fermions in eq. (3.6) and of the duality

relations of eq. (3.7) are fully determined by supercovariance. We thus replace in such

equations the spin connection and the field strengths with the supercovariant expressions

(again neglecting λ contributions)4

ω̂µ,ab = ωµ,ab + 1
2e

ν
ae

ρ
b[ψ̄νγρψµ + ψ̄µγνψρ + ψ̄νγµψρ] ,

Ĝµ1...µ2n
= Gµ1...µ2n

+ n(2n − 1)e−φψ̄[µ1
γµ2...µ2n−1

γn
11ψµ2n] ,

Ĥµ1...µ3
= Hµ1...µ3

− 3ψ̄[µ1
γ11γµ2

ψµ3] ,

Ĥµ1...µ7
= Hµ1...µ7

− 21ψ̄[µ1
γµ2...µ6

ψµ7] . (3.9)

The calculation then proceeds exactly as in the IIB case discussed in the previous sec-

tion. The terms of the form ǫ2ψ2 resulting in the commutators of two supersymmetry

transformations on the form fields are the terms resulting from considering only the purely

fermionic term in the supersymmetry variation of the form field, that is only the first term

on the right hand side of each line of eq. (3.3), and the terms coming from the purely

fermionic variation of the form fields in eq. (3.3). The first can be immediately written

by simply substituting the supercovariant expressions of eq. (3.9) to the bosonic result,

while the latter are simply read from eq. (3.4). In order to compare the terms, we have to

perform some Fierz rearrangements. Given that the IIA spinors are not chiral, we have to

use the Fierz identity

ξχ̄ = −
1

16
(χ̄ξ) +

1

32
γµν(χ̄γµνξ) −

1

384
γµνρσ(χ̄γµνρσξ) , (3.10)

where χ and ξ are generic ten-dimensional spinors with opposite chirality, together with

the Fierz identity of eq. (2.12), which applies when the chirality of the two spinors is the

same. One can then show that the commutator of two supersymmetry transformations

produces a supersymmetry transformation with parameter

ζ = −ξµψµ , (3.11)

where we denote with ξµ the parameter of general coordinate transformations

ξµ = ǭ2γµǫ1 . (3.12)

We now want to repeat this analysis for the 10-forms.

4Note that the super-covariant curvature Ĥµ1...µ9
does not contain any gravitino squared terms.
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3.2 Ten-form potentials

Using the duality relations of eq. (3.7) and the expressions of eq. (3.8), one derives the

following crucial identities:

Λ[µ1µ2
Gµ3...µ10] = Λ[µ1...µ8

Gµ9µ10] ,

Λ[µ1...µ4
Gµ5...µ10] = Λ[µ1...µ6

Gµ7...µ10] ,

Σ[µ1
Hµ2...µ10] = ∂[µ1

φe−2φǭ2γµ2...µ10]ǫ1 . (3.13)

Using these identities one can show that the supersymmetry algebra at lowest order in

the fermions closes on two independent 10-forms transforming non-trivially under gauge

transformations. The gauge transformations of these 10-forms can be written in the abelian

base exactly as for the forms of lower rank. They read

δBµ1...µ10
= 10∂[µ1

Σµ2...µ10] + 135
2 G[µ1µ2

Λµ3...µ10] − 210G[µ1 ...µ6
Λµ7...µ10]

+135
2 G[µ1...µ8

Λµ9µ10] −
3
2Gµ1...µ10

Λ − 240H[µ1...µ3
Σµ4...µ10] ,

δB̃µ1...µ10
= 10∂[µ1

Σ̃µ2...µ10] + 315G[µ1...µ4
Λµ5...µ10] − 525G[µ1 ...µ6

Λµ7...µ10]

+135G[µ1...µ8
Λµ9µ10] − 3Gµ1...µ10

Λ − 240H[µ1...µ3
Σµ4...µ10] , (3.14)

while the supersymmetry transformations in this base are

δBµ1...µ10
= ǭγµ1...µ10

λ− 15C[µ1...µ9
δFCµ10] + 252C[µ1...µ5

δFCµ6...µ10]

−180C[µ1...µ3
δFCµ4...µ10] + 15C[µ1

δFCµ2...µ10] + 90B[µ1...µ8
δFBµ9µ10] ,

δB̃µ1...µ10
= ǭγµ1...µ10

λ− 180C[µ1...µ7
δFCµ8...µ10] + 630C[µ1...µ5

δFCµ6...µ10]

−360C[µ1...µ3
δFCµ4...µ10] + 30C[µ1

δFCµ2...µ10] + 90B[µ1...µ8
δFBµ9µ10] . (3.15)

This analysis thus completes and corrects the one of ref. [11], were only one combination

of these two 10-forms was found because the identities of eq. (3.13) were basically missed.

As shown in [9], the supersymmetry algebra at lowest order in the fermions also closes on

the trivial 10-form D10, whose supersymmetry transformations is

δDµ1...µ10
= e−2φ[−10ǭγ[µ1...µ9

ψµ10] + ǭγµ1...µ10
λ] , (3.16)

and whose gauge transformation is simply δD10 = dΛ9.

Before analysing the supersymmetry algebra on these 10-forms at quartic order in the

fermions, we want to show that the two non-trivial 10-forms are precisely those predicted

by E11. The way to obtain the IIA theory from E11 was discussed originally in [19]. The

analysis of all the commutation relations involving the generators up to the 10-form gener-

ators, as well as the computation of all the gauge transformations and the field strengths

for all the fields up to the 10-forms, was performed in [17]. We refer to eq. (5.1) of that

paper for the algebraic conventions. We add to those commutators the ones that produce

the 10-form generators, which are

[Rµ1µ2 , Rµ3...µ10] = Rµ1...µ10 [Rµ1...µ3, Rµ4...µ10] = Rµ1...µ10 + 2R̃µ1...µ10 ,

[Rµ1...µ5, Rµ6...µ10] = R̃µ1...µ10 [Rµ1 , Rµ2...µ10] = 4Rµ1...µ10 + 2R̃µ1...µ10, (3.17)
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where Rµ1...µ10 and R̃µ1...µ10 are the two independent 10-form generators. If one then

considers the group element

g = eAµ1...µ10
Rµ1...µ10

eÃµ1...µ10
R̃µ1...µ10

eAµ1...µ9
Rµ1...µ9

...eAµRµ

, (3.18)

where the A’s are the fields associated to each generator, and requires symmetry under

global transformations of the form g → g0g, one obtains the global transformations of the

fields. In particular for the 10-forms one gets

δAµ1...µ10
= aµ1...µ10

+ a[µ1...µ3
Aµ4...µ10] + a[µ1µ2

Aµ3...µ10] + 4a[µ1
Aµ2...µ10] (3.19)

−1
3A[µ1...µ3

Aµ4µ5
Aµ6µ7

Aµ8µ9
aµ10] ,

δÃµ1...µ10
= ãµ1...µ10

+ 1
2a[µ1...µ5

Aµ6...µ10] + 2a[µ1...µ3
Aµ4...µ10] + a[µ1µ2

Aµ3...µ5
Aµ6...µ10]

+2a[µ1
Aµ2...µ10] + 2

3a[µ1
Aµ2...µ4

Aµ5µ6
Aµ7µ8

Aµ9µ10] + 1
2a[µ1

Aµ2...µ6
Aµ7µ8

Aµ9µ10].

One then recovers the gauge transformations of the fields by promoting the constant shifts

to gauge transformations in a way analogous to eq. (2.24). One can show that after field

redefinitions and redefinitions of the gauge parameters, the transformations of eq. (3.20)

coincide with two linear combinations of the gauge transformations of eq. (3.14), which

shows that the two non-trivial ten-form we found are exactly those predicted by E11.

We now repeat for the IIA 10-forms the same analysis that was performed for the

doublets of 10-forms of the IIB theory. We consider the commutator of two supersymmetry

transformations on the IIA 10-forms considering all the fermionic terms that are quadratic

in the gravitino. One can immediately see using the ten-dimensional Fierz identities of

eqs. (2.12) and (3.10) that the supersymmetry algebra does not close on any of the 10-

forms transforming under supersymmetry as in eqs. (3.15) and (3.16). One only obtains

closure by considering a particular combination of each of the non-trivial 10-forms with the

trivial one. The result is that the only two 10-forms compatible with supersymmetry are

Bµ1...µ10
− 14Dµ1...µ10

,

B̃µ1...µ10
− 38Dµ1...µ10

. (3.20)

This produces for the IIA algebra the same result that we obtained for IIB in the previous

section. The closure of the supersymmetry algebra on top-forms at lowest order in the

fermions is not enough to guarantee closure at the full level.

3.3 IIA superspace

The superspace formulation of IIA supergravity was given in [20], while most of the forms

were included in [21, 22]. It was also derived from D = 11 superspace in [23], from which

paper the conventions in this subsection are taken. The Bianchi identities for the RR forms

are

dG2n+2 = H3G2n (3.21)
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while for the NS forms one has

dH3 = 0 ,

dH7 =
1

2
G2

4 −G2G6 ,

dH9 = −H3H7 +
1

2
G4G6 −

3

2
G2G8 , (3.22)

The dimension-zero components of the RR field strengths are proportional to gamma-

matrices multiplied by e−φ in the string frame, while for the NS field strengths one has

no factor of e−φ in the case of H3, a factor of e−2φ for H7, while the dimension-zero

component of H9 vanishes due to the absence of an appropriate symmetric gamma-matrix.

The dimension one-half components depend linearly on λ with the same dilaton factors

(e−2φ for H9).

Now consider the possible eleven-form field strengths. There are two allowable Bianchi

identities that can be combined into one:

dH11 = A

(

H3H9 +
3

2
G2G10 −

1

4
G2

6

)

+B

(

−G2G10 +G4G8 −
1

2

)

, (3.23)

where A and B are real constants. There are also two possible non-trivial dimension zero

components, proportional to γ9,2 and γ̃9,2, where the tilde indicates that a factor of γ11 is

present. The second of these requires that both A and B be zero; we shall come back to

this in a moment. For the first case, if we write

H9,2 = −iKe−2φγ9,2 , (3.24)

with K constant, we find that (3.23) is satisfied if 2A+8B = K, so that there are indeed two

independent gauge non-trivial eleven-forms. The (10, 1) component of H11 is proportional

to e−2φ(γ · λ)10,1 multiplied by a constant depending linearly on A and B.

Can there also be a gauge-trivial eleven-form? The answer is yes, but that it is itself

trivial, i.e. exact. The dimension-zero component is proportional to γ̃9,2, and the dimension

one-half component is proportional to (γ̃ ·λ)10,1, but the whole form can be written as dM10,

where the only non-zero component of M is M10,0 = ǫ10,0 (i.e. ǫ regarded as a (10, 0)-form).

4 Conclusions

In this work we re-considered our earlier work [11–13] on top-form potentials in IIA and

IIB supergravity. We found in both the IIA and IIB case that the gauge-trivial 10-form

potentials found in our earlier work are excluded by supersymmetry considerations. To be

precise, they are allowed by lowest-order supersymmetry but in this work we showed that

this is not enough. By considering higher-order fermionic terms we were able to show that

gauge-trivial ten-form potentials are forbidden by supersymmetry. The results of this paper

are confirmed by an independent (IIA as well as IIB) superspace analysis. Furthermore,
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all gauge non-trivial top-form potentials can be derived by a separate E11-analysis. This

strongly suggests that we finally obtained full control on the top-form structure of IIA and

IIB supergravity.

It remains an open question what the precise brane interpretation is of the different

gauge non-trivial top-form potentials. It is known that in the IIB case the D9-brane is part

of the quadruplet of 10-form potentials [12]. The situation is less clear for the doublet of

eq. (2.26) we found in this work. This doublet does not seem to correspond to a new set of

“(p,q) 9-branes” in the usual sense. This can for instance be seen from the fact that it is

impossible to write down a kappa-symmetric action for a brane which couples to this 10-

form potential. The same applies to the IIA case: the two 10-form potentials of eq. (3.20)

can not lead to a kappa-symmetric brane effective action. An interpretation of the 10-form

potentials as Lagrange multipliers for the constancy of certain gauge parameter functions

g(x) seems also out of the question in the absence of any known gauged supergravity in ten

dimensions. A similar lack of interpretation exists in the IIA case. This is the least to say

intriguing given the fact that most (but not all) other p-forms of IIA and IIB supergravity

have a brane interpretation.

It is natural to ask oneself in which sense the results on the top-form structure of

maximal ten-dimensional supergravity found in this paper can be extended to other cases

with fewer dimensions and/or supersymmetries. In particular, it would be interesting to

see whether a general pattern emerges and whether this fits with an extended Kac-Moody

algebra structure. These and related questions we leave for future research.
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