10 research outputs found
Data from: De novo sequencing and variant calling with nanopores using PoreSeq
The accuracy of sequencing single DNA molecules with nanopores is continually improving, but de novo genome sequencing and assembly using only nanopore data remain challenging. Here we describe PoreSeq, an algorithm that identifies and corrects errors in nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA transits through the nanopore and finds the sequence that best explains multiple reads of the same region. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100× coverage. We also use the algorithm to assemble Escherichia coli with 30× coverage and the λ genome at a range of coverages from 3× to 50×. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods
Diabetes Protects from Prostate Cancer by Downregulating Androgen Receptor: New Insights from LNCaP Cells and PAC120 Mouse Model
Type 2 diabetes has been associated with decreased risk of prostate cancer in observational studies, and this inverse association has been recently confirmed in several large cohort studies. However the mechanisms involved in this protective effect remain to be elucidated. The aim of the present study was to explore whether different features of type 2 diabetes (hyperinsulinemia, hyperglycemia and tumor necrosis factor alpha [TNF-α]) protect against the development of prostate cancer. For this purpose LNCaP cells were used for in vitro experiments and nude mice in which PAC120 (hormone-dependent human prostate cancer) xenografts had been implanted were used for in vivo examinations. We provide evidence that increasing glucose concentrations downregulate androgen receptor (AR) mRNA and protein levels through NF-κB activation in LNCaP cells. Moreover, there was a synergic effect of glucose and TNFα in downregulating the AR in LNCaP cells. By contrast, insulin had no effect on AR regulation. In vivo experiments showed that streptozotocin-induced diabetes (STZ-DM) produces tumor growth retardation and a significant reduction in AR expression in PAC120 prostate cancer mice. In conclusion, our results suggest that hyperglycemia and TNF-α play an important role in protecting against prostate cancer by reducing androgen receptor levels via NF-κB
Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation
The microscopic details of how peptides translocate one at a time through nanopores are crucial determinants for transport through membrane pores and important in developing nano-technologies. To date, the translocation process has been too fast relative to the resolution of the single molecule techniques that sought to detect its milestones. Using pH-tuned single-molecule electrophysiology and molecular dynamics simulations, we demonstrate how peptide passage through the α-hemolysin protein can be sufficiently slowed down to observe intermediate single-peptide sub-states associated to distinct structural milestones along the pore, and how to control residence time, direction and the sequence of spatio-temporal state-to-state dynamics of a single peptide. Molecular dynamics simulations of peptide translocation reveal the time- dependent ordering of intermediate structures of the translocating peptide inside the pore at atomic resolution. Calculations of the expected current ratios of the different pore-blocking microstates and their time sequencing are in accord with the recorded current traces