47 research outputs found

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Computing the effective action with the functional renormalization group

    Get PDF
    The \u201cexact\u201d or \u201cfunctional\u201d renormalization group equation describes the renormalization group flow of the effective average action \u393 k. The ordinary effective action \u393 0 can be obtained by integrating the flow equation from an ultraviolet scale k= \u39b down to k= 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang\u2013Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. \ua9 2016, The Author(s)

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Brazilian Consensus on Photoprotection

    Full text link

    Sports Participation and Juvenile Delinquency: A Meta-Analytic Review

    Get PDF
    Participation in sports activities is very popular among adolescents, and is frequently encouraged among youth. Many psychosocial health benefits in youth are attributed to sports participation, but to what extent this positive influence holds for juvenile delinquency is still not clear on both the theoretical and empirical level. There is much controversy on whether sports participation should be perceived as a protective or a risk factor for the development of juvenile delinquency. A multilevel meta-analysis of 51 published and unpublished studies, with 48 independent samples containing 431 effect sizes and N = 132,366 adolescents, was conducted to examine the relationship between sports participation and juvenile delinquency and possible moderating factors of this association. The results showed that there is no overall significant association between sports participation and juvenile delinquency, indicating that adolescent athletes are neither more nor less delinquent than non-athletes. Some study, sample and sports characteristics significantly moderated the relationship between sports participation and juvenile delinquency. However, this moderating influence was modest. Implications for theory and practice concerning the use of sports to prevent juvenile delinquency are discussed. Keywords Sports participation Juvenile delinquency Multilevel meta-analysis Revie

    Pore show

    No full text

    Occupational exposure to ultraviolet radiation: The duality dilemma

    Get PDF
    Human exposure to ultraviolet (UV) radiation is a component of everyday life and a significant hazard for outdoor workers. In addition, a large range of artificial sources also has the potential to provide extreme occupational UV exposure. Even though the human health risks of overexposure to UV are well documented, to date relatively little is known quantitatively about UV exposure. For example, the evidence indicates that workers who are exposed to particular sources (for example, welding arcs) are exposed to extreme UV exposures, despite the use of current control measures. In contrast, increasing evidence points to significant health impacts resulting from underexposure to UV, particularly with the production (or more correctly lack of production) of vitamin D in the skin. The latter poses a serious issue for the work-force, with specific risks for workers lacking adequate sun exposure-underground miners, long-haul flight crews, shift workers, and perhaps indoor workers. Using a risk-management approach, this paper provides a comprehensive review of occupational UV sources, health impact of occupational UV exposure, occupational exposure standards, and levels of exposure in various settings, and discusses the appropriate control measures. In addition, the duality aspect of health impacts from overexposure and underexposure to UV and the associated occupational health implications are specifically explored
    corecore