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Abstract The “exact” or “functional” renormalization
group equation describes the renormalization group flow of
the effective average action �k . The ordinary effective action
�0 can be obtained by integrating the flow equation from an
ultraviolet scale k = � down to k = 0. We give several exam-
ples of such calculations at one-loop, both in renormalizable
and in effective field theories. We reproduce the four-point
scattering amplitude in the case of a real scalar field the-
ory with quartic potential and in the case of the pion chiral
Lagrangian. In the case of gauge theories, we reproduce the
vacuum polarization of QED and of Yang–Mills theory. We
also compute the two-point functions for scalars and gravi-
tons in the effective field theory of scalar fields minimally
coupled to gravity.
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1 Introduction

The functional renormalization group (FRG) is a way of
studying the flow of infinitely many couplings as functions of

a e-mail: rachwal@fudan.edu.cn

an externally imposed cutoff. The idea originates from Wil-
son’s understanding of the renormalization group (RG) as
the change in the action that is necessary to obtain the same
partition function when the ultraviolet (UV) cutoff is lowered
[1,2]. Early implementations of this idea were based on dis-
crete RG transformations, but soon there appeared equations
describing the change of the action under continuous shifts of
the cutoff. The first such equation was the Wegner–Houghton
equation [3], which has been widely used to study statistical
models and, in a particle physics context, to put bounds on the
Higgs mass [4]. Another related equation that has been used
originally to gain new insights in the renormalizability of φ4

theory is the Polchinski equation [5]. In particle physics one
is usually more interested in the effective action (EA) than in
the partition function, so one may anticipate that an equation
describing the flow of the generator of 1PI Green functions
may be of even greater use. For this purpose, the convenient
functional to use is the effective average action (EAA) �k . It
is defined in the same way as the ordinary effective action,
with the following modifications. First, one adds to the bare
action S[φ] a cutoff term characterized by a cutoff scale k,
of the form

�Sk[φ] = 1

2

∫
ddq φ(−q) Rk(q

2) φ(q). (1)

Thus, the partition function becomes

eWk [ j] =
∫

(dφ)e−S[φ]−�Sk [φ]−∫ dx j φ. (2)

Second, after performing the Legendre transform one sub-
tracts the same term: �k[ϕ] = −Wk[ j]+

∫
dx j ϕ −�Sk[ϕ],

where ϕ = 〈φ〉. For general reviews see e.g. [6–9]. The effect
of this term is to suppress the propagation of low momen-
tum modes leaving the vertices unchanged. The cutoff ker-
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nel Rk(z) is required to go to zero fast when its argument
z (which in flat spacetime applications can be thought of as
momentum squared) is greater than the cutoff scale k2. In
typical application this decay could be a polynomial of suf-
ficiently high degree or an exponential. The cutoff kernel is
also required to tend to zero (for all z) when k → 0. This
implies that when k → 0 the EAA reduces to the ordinary
effective action.

The k-dependence of the EAA is described by the Wet-
terich equation [10–12]

∂t�k = 1

2
S Tr

(
δ2�k

δϕδϕ
+ Rk

)−1

∂t Rk , (3)

where t = log(k/k0), k0 is an arbitrary reference scale and
the supertrace in the r.h.s. stands (in flat spacetime) for an
integration over coordinate and momentum space and a trace
over any representation of internal and spacetime symmetries
that the fields may carry. Due to the fast fall-off of the cutoff
kernel, also the function ∂t Rk , which appears inside the trace
in the r.h.s. of (3), decays fast for large z. This makes the
trace in the r.h.s. of (3) convergent.

The functional renormalization group equation (FRGE)
has been widely used in studies of the infrared (IR) proper-
ties of statistical and particle physics models, in particular
of phase transitions and critical phenomena. It has also been
used to study the ultraviolet behaviour of gravity, in particu-
lar to establish the existence of a non-trivial fixed point which
may be used to define a continuum limit [13–15]. Here we
would like to discuss some examples taken mostly from par-
ticle physics where the Wetterich equation is used instead as
a tool to compute the effective action.

The basic idea is as follows. Assume that �k is the most
general functional of the given fields which is invariant under
the assumed symmetries of the system. In many applications
it is justified to assume that it is a semi-local functional [19,
20], meaning that it admits an expansion into infinitely many
local terms constructed with the fields and their derivatives
of arbitrary degree. We call “theory space” the space of these
functionals. Equation (3) defines a vector field on this space
whose integral lines are the RG trajectories. We can now fix
an arbitrary initial point in theory space and identify it as the
“bare” action of the theory at some UV scale �. Typically one
will choose this bare action to be local and simple, but this is
not essential. One can integrate the RG flow in the direction
of decreasing t and the IR endpoint of the flow for t → −∞
represents the effective action. The couplings in the effective
action can be interpreted as renormalized couplings, and the
integral of their beta functions from k = 0 to k = � is the
relation between bare and renormalized couplings.

One can also ask what would happen if we tried to take
the limit � → ∞. This is equivalent to solving the FRGE in
the direction of increasing t with the same initial condition.

(Since the initial condition at the original value of � is kept
fixed, also the effective action will remain fixed, so this is very
similar to the Wilsonian procedure of changing the action at
the UV cutoff “keeping the physics fixed”.) There is a variety
of possible behaviours. If some coupling blows up at finite
t (a Landau pole), the RG flow stops there and one has to
interpret the theory as an effective field theory with an upper
limit to its validity. On the other hand if the trajectory ends
at a fixed point, one may expect all physical observables to
be well behaved. In this case the theory is UV complete. The
main point is that by integrating the flow towards the UV one
can study the UV divergences of the theory and argue about
its UV completeness.

Below we will calculate the r.h.s. of the Wetterich equa-
tion for several theories, and then we integrate the flow
down to k = 0 to obtain the effective action. Of course,
given that the effective action of any non-trivial theory is
infinitely complicated, we can only obtain partial informa-
tion as regards such a theory, and then only in certain approx-
imations. Here we will exploit the great flexibility of the
FRGE with regards to approximation schemes. In typical
previous applications of the FRGE, for example in the study
of the Wilson–Fisher fixed point, it is often enough to retain
only the zero-momentum part of the effective action, but it
is important to retain the full field dependence. In particle
physics one usually considers the scattering of a few parti-
cles at a time and the full field dependence is not needed.
On the other hand, there one is interested in the full momen-
tum dependence. Clearly, a different type of approximation
is needed.

In the following, unless otherwise stated, we will calculate
the r.h.s. of the flow equation keeping �k fixed at its ultra-
violet form ��.1 In perturbation theory this is equivalent to
working at one-loop. The one-loop EAA is given by

�
(1)
k [ϕ] = S[ϕ] + 1

2
Tr log

(
δ2S

δϕδϕ
+ Rk

)
(4)

and satisfies the equation

∂t�
(1)
k = 1

2
Tr

(
δ2S

δϕδϕ
+ Rk

)−1

∂t Rk . (5)

We will use known results on the non-local heat kernel to
compute the trace on the r.h.s. and in this way obtain the flow
of the non-local part of the EAA. A similar calculation in the
full flow equation is beyond currently available techniques.
Integrating the flow we will derive the non-local, finite parts
of the effective action containing up to two powers of the

1 Notice that the action S that is used in the functional integral to define
the theory actually differs from ��. We refer to [16–18] for a discussion
of the “reconstruction problem” which gives the exact relation between
�� and S.
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field strength. (By “field strength” we mean here in general
the curvature of the metric or of the Yang–Mills fields or the
values of the scalar condensates.) Such terms can be used to
describe several physical phenomena, such as self-energies
and, in some cases, scattering amplitudes. In each of the cases
that we shall consider one can find some justification for the
approximations made, as we shall discuss below.

We now give a brief overview of the main results and of
the content of the subsequent sections. In Sect. 2 we review
the mathematical results for the non-local heat kernel expan-
sion of a function of a Laplace-type operator of Eq. (6). The
operator will generally depend on background fields such as
metric, Yang–Mills field (if it acts on fields carrying non-zero
charges of the gauge group) or scalar condensates. The trace
of the heat kernel of the operator admits a well-known asymp-
totic expansion whose coefficients are integrals of powers of
the field strengths. The non-local heat kernel expansion is a
sum of infinitely many such terms, containing a fixed num-
ber of field strengths but arbitrary powers of derivatives. It
can thus be viewed as a vertex expansion of the heat kernel.
One can expand the trace of any operator, and hence also
the trace on the r.h.s. of Eq. (3), as a sum of these non-local
expressions, with coefficients that depend on the particular
function that is under the trace. There are certain ambiguities
in these calculations: one may choose to regard the r.h.s. as
a function of different operators, and one has the freedom of
choosing different cutoff functions Rk . We shall see, how-
ever, that physical results are independent of these choices.

As a warmup in Sect. 3 we will begin by using this tech-
nique to calculate the EA of a scalar field. We will see that the
integration of the FRGE yields the familiar relations between
the bare and renormalized couplings and that in the limit
� → ∞ there are only three divergences. Integration of the
flow equation down to k = 0 yields an EA that encodes the
familiar formula for the one-loop scattering amplitude.

In Sect. 4 we compute the EA for photons in QED which is
obtained by integrating out the fermion fields. We reproduce
the known vacuum polarization effects, and, within an expan-
sion in inverse powers of the electron mass, the four-photon
interactions described by the Euler–Heisenberg Lagrangian.
In Sect. 5 we calculate the vacuum polarization effects in
Yang–Mills theory. In this case, unlike all other cases con-
sidered in this paper, due to IR divergences it is not possible
to integrate the flow equation down to k = 0. We thus have to
restrict our attention to a finite range of momenta for which
the theory remains in a neighbourhood of its asymptotically
free UV fixed point.

The remaining two sections are devoted to examples of
effective field theories (EFTs). In Sect. 6 we consider the chi-
ral nonlinear sigma model, which describes the low energy
interactions of pions (and also, in a different interpretation,
the low energy scattering of longitudinal W bosons). As
expected, in this case we find divergences that are not of

the same form as in the original action. The effective action
is organized as an expansion in powers of p/Fπ , where p is
momentum and Fπ is the pion decay constant. We compute
in the one-loop approximation the four-point function and
we show that it reproduces the well-known result of Gasser
and Leutwyler [45].

Finally in Sect. 7 we consider the theory of a scalar field
coupled to dynamical gravity. We compute the FRGE keep-
ing terms with two field strengths but all powers of momen-
tum. This calculation is justified by an expansion in powers
of p/MPlanck. In this case we obtain for the first time unam-
biguous covariant formulae for the logarithmic terms in the
EA.

2 The non-local heat kernel expansion

The r.h.s. of Eq. (3) is the trace of a function of an operator �.
In the simplest cases this operator is a second-order Laplace-
type operator. In the presence of general background fields
(gravity, Yang–Mills fields) this operator will be a covariant
Laplacian, related to the inverse propagator of the theory in
question. In general it will have the form

� = −D21 + U, (6)

where D is a covariant derivative with respect to all the back-
ground fields and U is a non-derivative part that is a matrix
in the appropriate representations of all the symmetry groups
that are carried by the fields (it thus carries both internal and
spacetime indices).

Before discussing any physical application, we outline
here the heat kernel method we employ in the calculation
of the trace. The typical expression that we need to trace is

hk(�,ω) = ∂t Rk(�)

� + ω + Rk(�)
. (7)

Sometimes one has an additional term −ηRk(�) in the
numerator, where η is called ‘anomalous dimension’. This
term can be neglected in one-loop calculations. The typical
form of the Wetterich equation is then

∂t�k = 1

2
Tr hk(�,ω). (8)

Let us introduce the Laplace transform h̃k(s, ω) by

hk(�,ω) =
∫ ∞

0
ds h̃k(s, ω)e−s�. (9)

If we insert Eq. (9) in the r.h.s. of Eq. (8), by linearity the
trace goes through the integral and we remain with

∂t�k = 1

2

∫ ∞

0
ds h̃k(s, ω)Tr e−s�. (10)
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One can now use the asymptotic expansion for the trace of
the heat kernel

Tr e−s� = 1

(4πs)d/2

∫
dd x

√
gtr

×[b0(�) + b2(�)s + b4(�)s2

+ · · · + bd(�)sd/2 + · · · ], (11)

whose first three coefficients are

b0(�) = 1

b2(�) = R

6
1 − U

b4(�) = 1

2
U2 + 1

6
D2U + 1

12
�μν�

μν − R

6
U

+1
(

1

180
R2

μναβ − 1

180
R2

μν + 1

72
R2 − 1

30
D2R

)

(12)

where the spacetime curvatures are constructed using the
Levi-Civita connection and �μν = [Dμ, Dν] is the field
strength tensor. The first d/2 terms in Eq. (11) come with an
overall negative power of s, while all subsequent terms have
positive powers. When we insert this expansion in Eq. (10)
we can write

∂t�k = 1

2

1

(4π)d/2

∫
dd x

√
g tr

×{b0(�)Q d
2
[hk] + b2(�)Q d

2 −1[hk]
+b4(�)Q d

2 −2[hk] + · · · + bd(�)Q0[hk] + · · · }
(13)

where the “Q-functionals” are defined by

Qn[ f ] =
∫ ∞

0
dss−n f̃ (s). (14)

For n a positive integer one can use the definition of the
Gamma function to rewrite (14) as a Mellin transform

Qn[ f ] = 1

�(n)

∫ ∞

0
dw wn−1 f (w), (15)

while for m a positive integer or m = 0

Q−m[ f ] = (−1)m f (m)(0). (16)

This expansion is useful to study the UV divergences,
which are always given by local expressions. In particular,
one finds that the first d terms in the expansion (13) give rise
to divergences in the effective action.

In order to calculate non-local, finite parts of the effective
action we need a more sophisticated version of the heat kernel
expansion which includes an infinite number of heat kernel
coefficients. This expansion has been developed in [21–24]
and retains the infinite number of heat kernel coefficients in
the form of non-local “structure functions” or “form factors”.

For an alternative derivation see [25]. Keeping terms up to
second order in the fields strengths, the non-local heat kernel
expansion reads as follows:

Tr e−s�

= 1

(4πs)d/2

∫
dd x

√
g tr

×
{

1 − sU + s1
R

6
+ s2

[
1Rμν fRic(−sD2)Rμν

+ 1R fR(−sD2)R + R fRU (−sD2)U

+ U fU (−sD2)U + �μν f�(−sD2)�μν
]

+ · · ·
}

.

(17)

The structure functions in Eq. (17) are given by

fRic(x) = 1

6x
+ 1

x2 [ f (x) − 1]

fR(x) = 1

32
f (x) + 1

8x
f (x) − 7

48x
− 1

8x2 [ f (x) − 1]

fRU (x) = −1

4
f (x) − 1

2x
[ f (x) − 1]

fU (x) = 1

2
f (x)

f�(x) = − 1

2x
[ f (x) − 1] , (18)

where the basic heat kernel structure function f (x) is defined
in terms of the parametric integral

f (x) =
∫ 1

0
dξ e−xξ(1−ξ). (19)

Using in Eq. (18) the Taylor expansion of the basic struc-
ture function f (x) = 1 − x

6 + x2

60 + O(x4), we obtain the
following “short time” expansion for the structure functions:

fRic(x) = 1

60
− x

840
+ x2

15120
+ O(x4)

fR(x) = 1

120
− x

336
+ 11x2

30240
+ O(x4)

fRU (x) = −1

6
+ x

30
− x2

280
+ O(x4)

fU (x) = 1

2
− x

12
+ x2

120
+ O(x4)

f�(x) = 1

12
− x

120
+ x2

1680
+ O(x4).

(20)

If we insert Eq. (20) in Eq. (17), the first term repro-
duces the coefficients of the local heat kernel expansion
discussed previously. If we compare with Eq. (11) we see
that not all coefficients match exactly. This is because the
local heat kernel expansion is derived by calculating the un-
integrated coefficients while the non-local heat kernel expan-
sion is derived by calculating the integrated ones. So the coef-
ficients derived by expanding the structure functions Eq. (18)
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may differ from the local ones Eq. (12) by a total derivative
or a boundary term. For example, only two of the three possi-
ble curvature square invariants present in Eq. (11) appear in
Eq. (17), the third one has been eliminated using Bianchi’s
identities and discarding a boundary term. For this reason
also the total derivative terms in the coefficient B4(�) are
not present in the non-local expansion. Thus, in general, a
straightforward series expansion of the non-local heat kernel
structure functions will not reproduce exactly the same heat
kernel coefficients of the local expansion. See [22] for more
details on this point.

Inserting Eq. (17) in Eq. (10) we obtain

∂t�k = 1

2

1

(4π)d/2

∫
dd x

√
g tr

×
{

1
[∫ ∞

0
ds h̃k(s, ω)s−d/2

]

−U
[∫ ∞

0
ds h̃k(s, ω)s−d/2+1

]

+ R

6
1
[∫ ∞

0
ds h̃k(s, ω)s−d/2+1

]

+1Rμν

[∫ ∞

0
ds h̃k(s, ω)s−d/2+2 fRic(sz)

]
Rμν

+1R
[∫ ∞

0
ds h̃k(s, ω)s−d/2+2 fR(sz)

]
R

+R

[∫ ∞

0
ds h̃k(s, ω)s−d/2+2 fRU (sz)

]
U

+U
[∫ ∞

0
ds h̃k(s, ω)s−d/2+2 fU (sz)

]
U

+�μν

[∫ ∞

0
ds h̃k(s, ω)s−d/2+2 f�(sz)

]
�μν

+O(R3)

}

= 1

2

1

(4π)d/2

∫
dd x

√
g
{
Q d

2
[hk] tr1

+Q d
2 −1[hk] tr

(
R

6
1 − U

)
+ RμνgRicR

μν tr1

+ R gRR tr1 + R gRU trU + tr (UgUU)

+tr
(
�μν g� �μν

)+ · · · } . (21)

Here and in the following z = −D2. The first three terms
are local and have been rewritten in terms of Q-functionals
as in the first terms of Eq. (13). In the remaining ones we
have defined

gA = gA(z, ω, k) =
∫ ∞

0
ds h̃k(s, ω)s−d/2+2 f A(sz), (22)

for A = {Ric, R, RU,U,�}. From the definition of the
Laplace transform we see that shifting the argument of hk
by a is the same as multiplying the Laplace transform by
e−sa . Then:

∫ ∞

0
ds s−ne−sa h̃k(s, ω) = Qn[hak,ω], (23)

where

hak,ω(z) ≡ hk(z + a, ω); hk,ω(z) ≡ hk(z, ω). (24)

We can use this to write the functions gA in terms of Q-
functionals of shifted arguments:

gRic(z, ω, k) = 1

6z
Q d

2 −1[hk,ω] − 1

z2 Q d
2
[hk,ω]

+ 1

z2

∫ 1

0
dξ Q d

2
[hzξ(1−ξ)

k,ω ]

gR(z, ω, k) = − 7

48z
Q d

2 −1[hk,ω] + 1

8z2 Q d
2
[hk,ω]

+ 1

32

∫ 1

0
dξ Q d

2 −2[hzξ(1−ξ)
k,ω ]

+ 1

8z

∫ 1

0
dξ Q d

2 −1[hzξ(1−ξ)
k,ω ]

− 1

8z2

∫ 1

0
dξ Q d

2
[hzξ(1−ξ)

k,ω ]

gRU (z, ω, k) = 1

2z
Q d

2 −1[hk,ω] − 1

4

∫ 1

0
dξ Q d

2 −2[hzξ(1−ξ)
k,ω ]

− 1

2z

∫ 1

0
dξ Q d

2 −1[hzξ(1−ξ)
k,ω ]

gU (z, ω, k) = 1

2

∫ 1

0
dξ Q d

2 −2[hzξ(1−ξ)
k,ω ]

g�(z, ω, k) = 1

2z
Q d

2 −1[hk,ω]

− 1

2z

∫ 1

0
dξ Q d

2 −1[hzξ(1−ξ)
k,ω ]. (25)

These formulae can be made more explicit by choosing
a specific cutoff kernel. We will use the piecewise linear or
“optimized” cutoff [26]

Rk(z) = (k2 − z)θ(k2 − z) = k2(1 − z̃)θ(1 − z̃) , (26)

where z̃ = z/k2. It has the virtue that the Q-functionals
can be evaluated in closed form. In d = 4 we will need the
functionals Q2, Q1 and Q0 for both unshifted and shifted
argument. The unshifted Q-functionals are

Qn [hk] = 2k2n

�(n + 1)

1

1 + ω̃
for n = 0, 1, 2 . . . (27)

where ω̃ = ω/k2. The parametric integrals of the shifted
functionals can be calculated using
∫ 1

0
dξ Q0[hzξ(1−ξ)

k ] = 2k2

k2 + ω

×
⎡
⎣1 −

√
1 − 4k2

z
θ(z − 4k2)

⎤
⎦

(28)
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∫ 1

0
dξQ1[hzξ(1−ξ)

k ]

= 2k4

k2 + ω

⎡
⎣1 − z

6k2 + z

6k2

(
1 − 4k2

z

) 3
2

θ(z − 4k2)

⎤
⎦

(29)

∫ 1

0
dξ Q2[hzξ(1−ξ)

k ] = k6

k2 + ω

[
1 − z

3k2 + z2

30k4

− z2

30k4

(
1 − 4k2

z

) 5
2

θ(z − 4k2)

⎤
⎦ .

(30)

Plugging these expressions into Eq. (25) we see that (in
d = 4) the functions gA depend only on z̃ and ω̃. In this
case it is convenient to define gA(z̃, ω̃) ≡ gA(z, ω, k). These
functions are explicitly given by

gRic(z̃, ω̃) = 1

30

1

1 + ω̃

[
1 −

(
1 − 4

z̃

)5/2

θ(z̃ − 4)

]
(31)

gR(z̃, ω̃) = 1

1 + ω̃

[
1

60
− 1

16

(
1 − 4

z̃

)1/2

θ(z̃ − 4)

+ 1

24

(
1 − 4

z̃

)3/2

θ(z̃ − 4)

+ 1

240

(
1 − 4

z̃

)5/2

θ(z̃ − 4)

]
(32)

gRU (z̃, ω̃) = 1

1 + ω̃

[
−1

3
+ 1

2

√
1 − 4

z̃
θ(z̃ − 4) − 1

6

×
(

1 − 4

z̃

) 3
2

θ(z̃ − 4)

]
(33)

gU (z̃, ω̃) = 1

1 + ω̃

[
1 −

(
1 − 4

z̃

)1/2

θ(z̃ − 4)

]
(34)

g�(z̃, ω̃) = 1

6

1

1 + ω̃

[
1 −

(
1 − 4

z̃

)3/2

θ(z̃ − 4)

]
. (35)

With these relations we can now compute the functional
traces on the rhs of the FRGE.

3 Real scalar

We begin considering Euclidean scalar theories defined by
the following bare action:

S[ϕ] = ��[ϕ]

=
∫

dd x

{
E� + 1

2
∂μϕ∂μϕ + m2

�

2
ϕ2 + λ�

4! ϕ4

}
.

(36)

The field-independent term has been put in for later con-
venience but it is unimportant as long as gravity can be
neglected. The restriction to a quartic potential is not dic-
tated by arguments of renormalizability and to deal with arbi-
trary potential is not problematic in the context of the FRGE.
In general, all the higher dimensional operators—which are
generated by the quartic interaction—have an effect on the
running of the quartic coupling itself. We ignore these terms
because we are interested in reproducing the standard result
for the one-loop four-point amplitude.

Using Eq. (36), the first step is to compute the Hessian
entering in the one-loop RG flow of Eq. (5)

δS

δϕδϕ
= −� + m2

� + λ�

2
ϕ2. (37)

In order to properly account for threshold effects, it is
convenient to choose the argument of the cutoff Rk(�) to be
the operator � = −� + λ�

2 ϕ2. Thus we have U = λ�

2 ϕ2. In
this way the function to be traced in the flow equation assumes
the standard form of Eq. (7) discussed in the previous section.
Equation (10) reads

∂t�k[ϕ] = 1

2
Tr hk

(
−� + λ�

2
ϕ2,m2

�

)

= 1

2

∫ ∞

0
ds h̃k(s,m

2
�) Tr e

−s
(
−�+ λ�

2 ϕ2
)
. (38)

We evaluate the trace in Eq. (38) using the non-local heat
kernel expansion. Setting U = λ�

2 ϕ2 in the general result of
Eq. (21) gives

∂t�k[ϕ] = 1

2

1

(4π)d/2

∫
dd x

∫ ∞

0
ds h̃k(s,m

2
�) s−d/2

×
[

1 − λ�

2
sϕ2 + λ2

�

4
s2ϕ2 fU (sz) ϕ2

]
, (39)

where z = −�. Using Eqs. (14) and (25) we obtain the
following form for the beta functional:

∂t�k[ϕ] = 1

2

1

(4π)d/2

∫
dd x

{
Q d

2
[hk] − λ�

2
Q d

2 −1[hk]ϕ2

+λ2
�

8
ϕ2
∫ 1

0
dξ Q d

2 −2[hzξ(1−ξ)
k ]ϕ2

}
. (40)

At this point we make the following ansatz for the EAA
entering in the l.h.s. of Eq. (38), bearing in mind that we are
interested in terms up to fourth order in the scalar fields:
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�k[ϕ] =
∫

dd x

{
Ek + Zk

2
∂μϕ∂μϕ

+ m2
k

2
ϕ2 + 1

4!ϕ
2Fk(−�)ϕ2

}
, (41)

with Fk(0) = λk . Plugging the ansatz for �k[ϕ] in Eq. (40)
we read off the beta functions

∂t Ek = 1

2

1

(4π)d/2 Q d
2

[hk] ,

∂t Zk = 0,

∂tm
2
k = −1

2

λ�

(4π)d/2 Q d
2 −1 [hk] (42)

and the flow of the structure function

∂t Fk(z) = 3

2

λ2
�

(4π)d/2

∫ 1

0
dξ Q d

2 −2

[
hzξ(1−ξ)
k

]
. (43)

Taking z → 0 in the last equation we obtain the beta
function for the self-interaction coupling constant

∂tλk = 3

2

λ2
�

(4π)d/2 Q d
2 −2 [hk] . (44)

From now on we restrict ourselves to d = 4, using Eq. (27)
to evaluate the Q-functionals, we see that the beta functions
for m2

k and λk are

∂tm
2
k = − λ�

(4π)2

k2

k2 + m2
�

, (45)

∂tλk = 3λ2
�

(4π)2

k2

k2 + m2
�

. (46)

One can now perform the RG improvement and make the
substitutions m� → mk , λ� → λk in the r.h.s. of the beta
functions and show, for example, that the theory (36) in triv-
ial. We will not repeat this discussion here, since we are
interested to show how to compute the four-point amplitude
in the context of the FRGE. Introducing the dimensionless
mass m̃2

k = k−2m2
k and expanding for small m̃2

k we get the
standard perturbative and scheme independent result:

∂t m̃
2
k = −2m̃2

� − 1

(4π)2

λ�

1 + m̃2
�

=
(

−2 + λ�

(4π)2

)
m̃2

� − λ�

(4π)2 + · · · ,

∂tλk = 3

(4π)2

λ2
�

1 + m̃2
�

= 3λ2
�

(4π)2 + · · ·

We compute now the finite part of the EAA by integrating
the flow of the structure function Eq. (43). Using Eq. (27)
and (34) to compute the beta functional of Eq. (40) we get

∂t�k[ϕ] = 1

2

1

(4π)2

∫
d4x

⎧⎨
⎩

k6

k2 + m2
�

− λ�

k4

k2 + m2
�

ϕ2

+λ2
�

4

k2

k2 + m2
�

ϕ2

×
⎡
⎣1 −

√
1 − 4k2

z
θ(z − 4k2)

⎤
⎦ϕ2

⎫⎬
⎭ . (47)

The one-loop effective action �0[ϕ] is recovered by inte-
grating Eq. (47) from k = � down to k = 0

�0[ϕ] = ��[ϕ] − 1

4

1

(4π)2

∫
d4x

×
⎧⎨
⎩
(

1

2
�4 − �2m2

� + m4
� log

�2 + m2
�

m2
�

)

−λ�

(
�2 − m2

� log
�2 + m2

�

m2
�

)
ϕ2

+λ2
�

2

(
1 + 1

2
log

�2 + m2
�

m2
�

)
ϕ4

−λ2
�

2
ϕ2

√
1 + 4m2

�

z
ArcTanh

1√
1 + 4m2

�

z

ϕ2

⎫⎬
⎭ . (48)

If we try to take the limit � → ∞ this expression contains
quartic, quadratic and logarithmic divergences. The renor-
malized action is of the form (41), with finite “renormal-
ized” couplings E0, m0, λ0. The relation between these and
the “bare” couplings E�, m�, λ� is contained in renormal-
ization conditions, which in the present context amount to a
choice of initial condition ��. The finite part of the renormal-
ized couplings is arbitrary and has to be determined by fit-
ting the theory to experimental observations. Here we choose
renormalization conditions that simply remove all the local
terms contained in the integral in (48):

E� = E0 + 1

4

1

(4π)2

(
1

2
�4−�2m2

�+m4
� log

�2 + m2
�

m2
�

)
,

m2
� = m2

0 − 1

4

λ�

(4π)2

(
�2 − m2

� log
�2 + m2

�

m2
�

)
,

λ� = λ0 + 1

8

λ2
�

(4π)2

(
1 + log

�2 + m2
�

m2
�

)
. (49)

At this point the EA �0 contains a local part of the same
form of (36) except for the replacement of the subscripts �

by subscripts 0, plus a non-local part that is given by the last
line of (48). In this part, using the perturbative logic, the bare
couplings can also be replaced by renormalized ones, up to
terms of higher order. It is clear that this step only makes
mathematical sense if � is bounded (the bound depending
on the smallness of the coupling). In any case the EA then
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takes the form

�0[ϕ] =
∫

d4x

⎧⎨
⎩E0 + 1

2
m2

0ϕ
2 + 1

4!λ0ϕ
4

+ λ2
0

8(4π)2 ϕ2

√
1 + 4m2

0

z
ArcTanh

×
⎛
⎝ 1√

1 + 4m2
0

z

⎞
⎠ϕ2

⎫⎬
⎭ . (50)

The scattering amplitude for the process ϕϕ → ϕϕ is
obtained by taking four functional derivatives of the effec-
tive action with respect to ϕ after performing the analytic
continuation to Minkowski space. Evaluating the expression
in Fourier space, we get

A(s, t, u;m0) = λ0 +
∑

w=s,t,u

λ2
0

(4π)2

√
1 + 4m2

0

−w
ArcTanh

× 1√
1 + 4m2

0−w

(51)

where s = (p1 + p2)
2, t = (p1 + p3)

2 and u = (p1 + p4)
2

and all momenta are taken to be incoming.
Notice that the expression entering in the r.h.s. of Eq. (51)

can be written in terms of the following Feynman integral,
which results from the computation of one-loop bubble dia-
grams:√

1 + 4m2
0

z
ArcTanh

1√
1 + 4m2

0
z

=
∫ 1

0
dx

{
1

2
log

[
1 + zx(1 − x)

m2
0

]
+ 1

}
. (52)

For an FRGE computation beyond the one-loop approxima-
tion see for example [27].

4 Quantum electrodynamics

We now consider Euclidean Quantum Electrodynamics
(QED) in d = 4, which is a perturbatively renormalizable
theory characterized by the following bare action:

S[A, ψ̄, ψ] = ��[A, ψ̄, ψ]

=
∫

d4x

[
1

4e2
�

FμνF
μν + ψ̄( /D + me)ψ

]
, (53)

where e� is the bare electric charge, me ≡ me,� is the bare
electron mass, /D = γ μDμ is the Dirac operator, Dμ =
∂μ + i Aμ is the covariant derivative and Fμν is the photon
field strength tensor

�μν = [Dμ, Dν

] = i Fμν = i(∂μAν − ∂ν Aμ). (54)

To quantize the theory we have to introduce a gauge-fixing
term which can be taken to be

Sg f [A] = 1

2e2
�α

∫
d4x (∂μA

μ)2, (55)

where α is the gauge-fixing parameter. Notice that the
Faddeev–Popov determinant can be safely discarded because
on a flat spacetime the ghost term decouples. The one-loop
effective action is given by

�[A, ψ̄, ψ]
= S[A, ψ̄, ψ] + 1

2
Tr

× log

[
−∂2gμν+

(
1− 1

α

)
∂μ∂ν−ψ̄γ μ 1

/D + me
γ νψ

]

−Tr log( /D + me). (56)

It is useful to rewrite the fermionic trace as

Tr log
(
/D + me

) = 1

2
log

× [det
(
/D + me

)
det
(− /D + me

)]

= 1

2
Tr log(� + m2

e), (57)

where

� = − /D2 = −D2 − σμν

2
Fμν (58)

and σμν = i
2

[
γ μ, γ ν

]
. We will work in the gauge α = 1

where the one-loop EAA for QED can be obtained introduc-
ing the cutoff kernels directly into Eq. (56):

�k[A, ψ̄, ψ] = S[A, ψ̄, ψ] + 1

2
Tr log

×
[
−∂2gμν − ψ̄γ μ 1

/D + me
γ νψ

+Rk(−∂2)μν

]

−1

2
Tr log

[
� + m2

e + Rk(�)
]
. (59)

Notice that in Eq. (59) we choose the argument of the
gauge cutoff function to be the flat-space Laplacian −∂2,
while for the fermion cutoff we take the covariant operator
�.

The one-loop flow equation is obtained by differentiat-
ing Eq. (59) with respect to the RG parameter t . Here we
are interested only in the fermion contribution to the photon
effective action �k[A] ≡ �k[A, 0, 0], we have

∂t�k[A] = 1

2
Tr

∂t Rk(−∂2)μν

−∂2gμν + Rk(−∂2)μν

−1

2
Tr

∂t Rk(�)

� + m2
e + Rk(�)

. (60)
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The flow equation for �[A] is now of the form of Eq. (8).
The first trace in Eq. (60) does not depend on the photon field
and thus will not generate any Aμ contribution to ∂t�k[A].
This reflects the fact that QED is an abelian gauge theory
with no photon self-interactions. Thus to one-loop order, all
the contributions to the running of the gauge part of the EAA
stem from the fermionic trace. From now on we will discard
the gauge trace.

We calculate the fermion trace in r.h.s. of Eq. (60) using
the non-local heat kernel expansion in Eq. (17). From Eq.
(58) we see that � is the generalized Laplacian operator of
Eq. (6) with U = −σμνFμν/2. The function to be traced is

hk(�,m2
e) = ∂t Rk(�)

� + m2
e + Rk(�)

(61)

We can now specialize Eq. (21) to the QED case:

∂t�k[A] = −1

2

1

(4π)2

∫
d4x

{
tr1
∫ ∞

0
ds s−2h̃k(s,m

2
e)

+ Fμν

[∫ ∞

0
ds h̃k(s,m

2
e) fF2 (sz)

]
Fμν

}
,

(62)

where z = −D2. The structure function fF2(x) is given by 2

fF2(x) = 2 fU (x) − 4 f�(x) = f (x) + 2

x
[ f (x) − 1]

= 4
∫ 1

0
dξ ξ(1 − ξ) e−xξ(1−ξ). (63)

Plugging Eq. (63) into Eq. (62) and using Eq. (23) we get

∂t�k[A] = −1

2

1

(4π)2

∫
d4x

×
{

4 Q2[hk] + 4 Fμν

×
∫ 1

0
dξ ξ(1 − ξ) Q0[hzξ(1−ξ)

k ]Fμν

}
. (64)

The first constant piece is the renormalization of the vac-
uum energy and we will drop it here. To proceed we need to
specify the form of the ansatz for �k[A], to be inserted in the
l.h.s. of Eq. (62). We choose

�k[A] =
∫

d4x

×
[
ZA,k

4
FμνF

μν + 1

4
Fμν ZA,k�k(−D2)Fμν

]
,

(65)

where ZA,k is the photon wave-function renormalization
which is related to the electric charge via the following iden-
tification:

2 We used tr U = 0, tr U2 = 2FμνFμν and tr �μν�
μν = −4FμνFμν .

ZA,k = 1

e2
k

. (66)

The quantity �k(−D2) is the running photon polarization
which is a function of the gauge-covariant Laplacian. The t-
derivative of Eq. (65) gives

∂t�k[A] = ∂t Z A,k
1

4

∫
d4x FμνF

μν

+1

4

∫
d4x Fμν∂t

[
ZA,k�k

(
−D2

)]
Fμν. (67)

Comparing Eq. (64) with Eq. (67) finally gives the flow equa-
tion

∂t Z A,k + ∂t
[
ZA,k�k(z)

]

= − 1

2π2

∫ 1

0
dξ ξ(1 − ξ) Q0[hzξ(1−ξ)

k ]. (68)

Since �k(0) = 0, the beta function for the wave-function
renormalization of the photon field is obtained by evaluating
Eq. (68) at z = 0:

∂t Z A,k = − 1

2π2

∫ 1

0
dξ ξ(1 − ξ)Q0[hk]

= − 1

6π2

k2

k2 + m2
e
, (69)

where in the last step we have used Eq. (27). Using the rela-
tion in Eq. (66) we can derive from Eq. (69) the beta function
for the electric charge

∂t e
2
k = e4

k

6π2

k2

k2 + m2
e
. (70)

The anomalous dimension of the photon field is given by

ηA,k = −∂t Z A,k

Z A,k
= e2

k

6π2

k2

k2 + m2
e
. (71)

Notice that in the limit me � k the fraction in Eq. (70)
becomes equal to one and we recover the standard beta func-
tion found in perturbation theory with a mass independent
regularization scheme [28]. On the other hand, for k � me

the denominator becomes large and the beta function goes
to zero. This threshold behaviour is the manifestation of the
decoupling of the electron at low energy.

If we integrate the beta function for the electric charge in
Eq. (70) from an UV scale � down to an IR scale k, we find

e2
k = e2

�

1 + e2
�

12π2 log 1+�2/m2
e

1+k2/m2
e

. (72)

Equation (72) is interesting for several reasons. First, it
shows the screening effect of the vacuum: electron–positron
pairs polarize the vacuum around an electric charge so that the
effective electric charge ek , at the scale k, is smaller than the
electric charge e� at the higher scale �. Second, for k → 0,
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it gives the relation between the bare electric charge e� and
the renormalized electric charge e0:

e2
0 = e2

�

1 + e2
�

12π2 log
(

1 + �2

m2
e

) . (73)

Third, it shows that QED, as defined by the bare action in
Eq. (53), is a trivial quantum field theory: if we take the limit
� → ∞ in Eq. (73), at fixed finite e�, we get a zero renor-
malized electric charge e0. Conversely, if we solve Eq. (73)
for the bare charge e2

� and we set the renormalized charge
e2

0 to some fixed value, then the bare coupling will diverge at
the finite “Landau pole” scale

�L = m2
e

(
e12π2/e2

0 − 1
)

. (74)

These are the two faces of QED’s triviality. So, even if
the theory is perturbatively renormalizable, it cannot be a
fundamental theory valid at arbitrarily high energy scales.
To find an explanation for the success of QED, we have to
take the effective field theory point of view.

We now come back to consider the full momentum struc-
ture of the r.h.s. of Eq. (68). Using Eqs. (66) and (69) we can
read off the running of the photon polarization function

∂t�k(z) = e2
k

6π2

k2

k2 + m2
e

× [1+�k(z)]− e2
k

2π2

∫ 1

0
dξ ξ(1−ξ) Q0

[
hz ξ(1−ξ)
k

]
. (75)

We can find the one-loop renormalized polarization func-
tion �0(x) integrating Eq. (75) from the UV scale � down
to k = 0 after having set the coupling ek to its bare value e�.
Notice that the term proportional to �k(z) in the r.h.s. of Eq.
(75) is at least of order e4 and we will discard it in perform-
ing the integration since we are interested in reproducing the
one-loop result. As we did in the section for the real scalar,
we use the optimized cutoff of Eq. (26) to evaluate the Q-
functional entering in Eq. (75). Performing the integral we
obtain

��(z) − �0(z) = e2
�

2π2

∫ 1

0
dξ ξ(1 − ξ) log

×
[

1 + ξ(1 − ξ)
z

m2
e

]
. (76)

Notice that Eq. (76) does not contain divergent pieces,
which are local.

Setting the initial condition ��(z) = 0, we see that the
renormalized photon vacuum polarization function is given
by

�0(z) = − e2
�

2π2

∫ 1

0
dξ ξ(1 − ξ) log

[
1 + ξ(1 − ξ)

z

m2
e

]
.

(77)

Inserting Eq. (77) in Eq. (65) and redefining Aμ →
Aμ/Z1/2

A we obtain the following one-loop photon effective
action:

�0[A] = 1

4

∫
d4x FμνF

μν

− e2
�

8π2

∫
d4x Fμν

×
(∫ 1

0
dξ ξ(1 − ξ)log

[
1 + ξ(1 − ξ)

−D2

m2
e

])

×Fμν + O(F4). (78)

Equation (78) is the full QED one-loop effective action for
the photon which is quadratic in the field strength. Although
the polarization function in Eq. (78) is a function of −D2,
in an abelian theory like QED it boils down to a function of
just the flat Laplacian −∂2 and thus does not give a non-zero
contribution to higher vertices of the effective action.

With similar methods one can calculate the local terms in
the EAA which are of quartic order in the field strength (and
in the derivatives):

�k[A]
∣∣∣
F4

= ak

∫
d4x

(
FμνF

μν
)2

+bk

∫
d4x FμνF

ναFαβF
βμ, (79)

where ak and bk are the Euler–Heisenberg coefficients
with negative quartic mass dimension. We can compute the
fermionic trace in Eq. (60) using the local heat kernel expan-
sion of Eq. (11). Contributions of order F4 are given by the
coefficient b8(�) of the expansion, which, for constant field
strength, has the following form [29]:

b8(−D2) = 1

24
U4 − 1

6
U2 �μν�

μν

+
[

1

288
(�μν�

μν)2 + 1

360
�μν�

να�αβ�βμ

]
.

(80)

Using

tr U4 = −1

6
FμνF

ναFαβF
βμ + 1

8
(FμνF

μν)2 and

tr �μν�
να�αβ�βμ = FμνF

ναFαβF
βμ (81)

we get

∂t ak = 1

2

e4
�

(4π)2

1

18
Q−2[hk],

∂t bk = −1

2

e4
�

(4π)2

7

45
Q−2[hk]. (82)

The Euler–Heisenberg coefficients a0 and b0 entering in the
one-loop effective action are obtained by integrating Eq. (82)
from k = ∞ down to k = 0. If we use the mass cutoff shape
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function for evaluating the Q-functionals, we obtain

a0 = 1

36

e4
�

(4π)2

∫ ∞

0

dk

k

4k2

(
k2 + m2

e

)3 = 1

36

1

(4π)2

e4
�

m4
e
,

b0 = − 7

90

e4
�

(4π)2

∫ ∞

0

dk

k

4k2

(
k2 + m2

e

)3 = − 7

90

1

(4π)2

e4
�

m4
e
,

(83)

where we imposed the initial condition a∞ = b∞ = 0.
These values coincide with the well-known result for the
Euler–Heisenberg coefficients.

By plugging these values back into Eq. (79) and combining
them with the O(∂4) term of Eq. (78) we obtain

�0[A]
∣∣∣
∂4

= 1

(4π)2

∫
d4x

[
1

15

e2
�

m2
e
Fμν�Fμν

+ 1

36

e4
�

m4
e

(
FμνF

μν
)2 − 7

90

e4
�

m4
e
FμνF

ναFαβF
βμ

]
.

(84)

which is the p4 part of the photon effective action [28]. The
first term in Eq. (84) is responsible of the Uehling effect
[30], while the other two describe the low energy scattering
of photons mediated by virtual electrons [31]. For a non-
perturbative use of the FRGE in QED see for example [32].

5 Yang–Mills

The situation for the non-abelian case is quite similar to the
abelian one, except for the fact that the gauge bosons are now
interacting. We begin by considering the Euclidean Yang–
Mills action for the gauge fields Ai

μ in dimension d:

SYM [A] = 1

4

∫
dd x Fi

μνF
μνi . (85)

In Eq. (85) the quantity Fi
μν is the gauge field strength

tensor defined by

Fi
μν = ∂μA

i
ν − ∂ν A

i
μ + ig f i jk A

j
μA

k
ν, (86)

where f i jk are the structure constants of the gauge symmetry
group and g is the coupling constant. The EAA is constructed
using the background field method [33,34]. The gauge field
is split as follows:

Aμ = Āμ + aμ, (87)

where aμ parametrizes the gauge fluctuations around the
background field Āμ. In the following we will remove the
bar and we will denote the background field simply by Aμ.
In order to properly quantize the theory we choose as a gauge-
fixing condition χ i = Dμaμi , where D is the covariant

derivative constructed with the background connection act-
ing on fields in the adjoint representation. The gauge-fixing
action then reads

Sg f [a; A] = 1

2α

∫
dd xDμa

μi Dνa
νi , (88)

where α is the gauge-fixing parameter. The background ghost
action reads

Sgh[a, c̄, c; A] =
∫

dd x D̂μc̄
i Dμci , (89)

where c̄ and c are the ghost fields and D̂ is the covariant
derivative constructed with the full field. The total action is
then obtained by summing the three contributions

S[a, c̄, c; A] = SYM [A + a]+Sg f [a; A] + Sgh[a, c̄, c; A].
(90)

The background effective action �k[a, c̄, c; A] which is
constructed using the background field method is a func-
tional of the background field (Aμ) and of the classical fields
conjugated to the currents coupled to the quantum fluctua-
tions, which we denote again by (aμ, c̄, c). The background
EA is invariant under the simultaneous gauge transformation
of both. One can define the gauge invariant EAA by setting
the classical fields to zero �k[A] ≡ �k[0, 0, 0; A]. In the
following we will study the RG flow of �k[A]. (Note that in
this case D̂ can be replaced by D in the ghost action.)

The exact RG equation for �k[A] can be found in [35].
Using Eq. (90) we obtain

∂t�k[A] = 1

2
Tr

∂t Rk(DT )

DT + Rk(DT )
− 1

2
Tr

∂t Rk(−D2)

−D2 + Rk(−D2)
,

(91)

where the gauge-covariant Laplacian is (DT )i j μν ≡
(−D2)i jημν + Ui j μν , with Ui j μν = 2 f i j l Fl μν . The com-
mutator of covariant derivatives is [Dμ, Dν]i j = �

i j
μν =

− f i j l Fl
μν .

We can now use the non-local heat kernel expansion of Eq.
(21) to compute the r.h.s. of Eq. (91). For the gauge group
SU (N ), we get

∂t�k[A]
∣∣∣
F2

= N

(4π)d/2

∫
dd x Fi

μν

×
[∫ ∞

0
ds h̃k(s, 0) s2−d/2 fF2(−sD2)

]
Fiμν,

(92)

where the structure function fF2(x) is given by

fF2(x) = 1

2
[4 fU (x) − d f�(x)]

+ f�(x) = f (x) + d − 2

4x
[ f (x) − 1] . (93)
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We need now to make an ansatz for the l.h.s. of the flow
equation. Retaining terms up to second order in the field
strength, but with arbitrary momentum dependence, the EAA
has the form

�k[A] = ZA,k

4

∫
dd x Fa

μνF
aμν

+ ZA,k

4

∫
dd x Fa

μν�k(−D2)abFbμν + O(F3),

(94)

where ZA,k = 1/g2
k and �k(z) is the running vacuum polar-

ization function.
Notice that the background wave-function renormaliza-

tion constant, and so the gauge coupling, enters the flow of
�k(x) only as an overall factor.

Comparing the expression of Eq. (94) with Eq. (92) and
using Eq. (25), we get the flow equation for the running vac-
uum polarization function:

∂t Z A,k + ∂t
[
ZA,k�k(z)

]

= N

(4π)d/2

{
4
∫ 1

0
dξ Q d

2 −2[hzξ(1−ξ)
k ]

+d − 2

z

(∫ 1

0
dξ Q d

2 −1[hzξ(1−ξ)
k ] − Q d

2 −1[hk]
)}

,

(95)

where z stands for the covariant Laplacian −D2. Evaluating
the Q-functionals for the optimized cutoff (26) in dimension
d = 4 gives

∂t Z A,k + ∂t
[
ZA,k�k(z)

] = N

(4π)2

×
⎡
⎣22

3
−
(

22

3
+ 8k2

3z

)√
1 − 4k2

z
θ(z − 4k2)

⎤
⎦ . (96)

Since �k(0) = 0 we can rewrite the above equation as

ηA,k = −∂t Z A,k

Z A,k
= −22

3

N

(4π)2 g
2
k (97)

and

∂t�k(z) = ηA,k�k(z) + g2
k N

(4π)2 gF2 (z̃) . (98)

The function gF2(z̃) is

gF2(z̃) = −
(

22

3
+ 8

3z̃

)√
1 − 4

z̃
θ(z̃ − 4). (99)

Notice that the k dependence in Eq. (98) enters only via the
combination z̃ = z/k2 and we used the relation g2

k = Z−1
A,k .

From the anomalous dimension in Eq. (97) we find imme-
diately the beta function for the gauge coupling:

∂t gk = 1

2
ηA,kg

2
k = − N

(4π)2

11N

3
g3
k , (100)

which is the standard one-loop result. Integrating the one-
loop beta function for the gauge coupling from the UV scale
� to the IR scale k we find

g2
� = g2

k

1 + g2
k

(4π)2
22N

3 log �
k

. (101)

A mass scale M can be defined by the relation

1 = g2
k

(4π)2

22N

3
log

k

M
, (102)

if we insert Eq. (102) in Eq. (101) we can write

α� = 2π
11
3 N log �

M

, (103)

where we defined α� = g2
�

4π
. This is the standard result found

in perturbation theory.
We now go back to the running of the vacuum polarization

in Eq. (98). The term ηA,k�k(z) is at least of order g4
k and

we will discard it here since we are interested in reproducing
the one-loop result. Moreover, we set the running coupling
to its bare value g�. We can now integrate the flow of �k(z)
in Eq. (98) from an UV scale � down to an IR scale k. We
get

��(z) − �k(z) = g2
�N

2(4π)2

∫ z/k2

z/�2

du

u
gF2(u). (104)

The integral in Eq. (104) is finite in the limit � → ∞
and no renormalization is needed. The function gF2 has no
constant term so for every z and k big enough the flow of
�k(z) is zero and no divergences can develop. In this limit,
the vacuum polarization function goes to its boundary value,
i.e. ��(z) = 0. Using the general integrals of Eqs. (28)–
(30), the vacuum polarization function at the scale k is finally
found to be

�k(z) = − g2
�N

(4π)2

⎧⎨
⎩−22

3

⎡
⎣1

2
log

z

k2 + log
1 +

√
1 − 4k2

z

2

⎤
⎦

+
(

64

9
+ 8k2

9z

)√
1 − 4k2

z

⎫⎬
⎭ (105)

for z/k2 ≥ 4 and �k(z) = 0 for z/k2 < 4. From Eq.
(105) we see that we cannot send k → 0, since the first
logarithm diverges in this limit. For k2 � z, Eq. (105) gives
the following contribution to the gauge invariant EAA:
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g2
�N

64π2

∫
d4x Fi

μν

[
11

3
log

(−D2)ab

k2 − 64

9
δab
]
Fiμν. (106)

We can interpret the obstruction to taking the limit k → 0
in Eq. (105) as a signal of the breakdown of the approximation
used in its derivation, where we considered the flow of �k(z)
as driven only by the operator 1

4

∫
F2. In order to be able to

continue the flow of the EAA in the deep IR, we need the
full non-perturbative power of the exact RG flow equation
that becomes available if we insert the complete ansatz (94)
in the r.h.s. side of it [36–44].

6 The chiral model

In the previous sections we have considered perturbatively
renormalizable theories. In the remaining two we shall con-
sider non-renormalizable ones. The standard way of treating
non-renormalizable theories is the method of effective field
theories [28]. We shall see here how to recover some well-
known results of the EFT approach using the FRGE. Previ-
ous application of the FRGE to the nonlinear sigma models
have been discussed in [46–51]. The dynamics of Goldstone
bosons is described by the nonlinear sigma model, a the-
ory of scalar fields with values in a homogeneous space. In
particular in QCD with N massless quark flavours the Gold-
stone bosons of spontaneously broken SUL(N ) × SUR(N )

symmetry correspond to the meson multiplet. These theories
are known as the chiral models. They have derivative cou-
plings and their perturbative expansion is ill-defined in the
UV. A related and phenomenologically even more pressing
issue is the high energy behaviour of the tree level scatter-
ing amplitude, which grows like s/F2

π , where s is the c.m.
energy squared and Fπ (the “pion decay constant”) is the
inverse of the perturbative coupling. This leads to viola-
tion of unitarity at energies of the order ∼4πFπ , which is
usually taken as the first sign of the breakdown of the the-
ory.

The chiral NLSM that we consider here is a theory of
three scalar fields πα(x), called the “pions”, parametrizing
(in a neighbourhood of the identity) the group SU (2). Geo-
metrically, they can be regarded as normal coordinates on
the group. We call U the fundamental representation of the
group element corresponding to the field πα:U = exp( f π),
π = παTα , Tα = i

2σα , T †
α = −Tα , tr (TαTβ) = − 1

2δαβ ,
α = 1, 2, 3. The coupling f is related to the pion decay con-
stant as Fπ = 2/ f . The standard SU (2)L×SU (2)R-invariant
action for the chiral model is3

S[π ] = − 1

f 2
�

∫
d4x trU−1∂μU U−1∂μU. (107)

3 Since U−1 = U† we have trU−1∂μU U−1∂μU = −tr ∂μU ∂μU†.

This is the term with the lowest number of derivatives. Terms
with more derivatives will be discussed later. Introducing the
above formulae and keeping terms up to six powers of π we
get

S[π ] = 1

2

∫
d4x

{
(∂μπα)2 − 1

12
f 2
�

×
[
παπα(∂μπβ)2 − (πα∂μπα)2

]

+ 1

360
f 4
�

[
(παπα)2(∂μπβ)2 − παπα(πβ∂μπβ)2

]

+O(π8)

}
. (108)

If we define the dimensionless fields ϕα = f πα and the
metric

hαβ( f�π) = δαβ − 1

12
f 2 × (πσ πσ δαβ − παπβ)

+ 1

360
f 4 [(πσ πσ )2δαβ

−πσ πσ παπβ ] + O(π8), (109)

we can rewrite Eq. (108) as a non-linear sigma model:

S[ϕ] = 1

2 f 2

∫
d4x hαβ(ϕ)∂μϕα∂μϕβ. (110)

Note that the pion fields πα are canonically normalized
and the metric is dimensionless, whereas the fields ϕα are
dimensionless.

Following [52–55] we use the background field method
and expand a field ϕ around a background ϕ̄ using the expo-
nential map: ϕ(x) = expϕ̄(x) ξ(x) where the quantum field
ξ is geometrically a vector field along ϕ̄. The EAA will be,
in general, a function of the background field and the Legen-
dre transform of sources coupled linearly to ξ , which we will
denote by the same symbol hoping that this will cause no con-
fusion. We also omit the bar over the background field so that
we can write the EAA as �k[ξ ;ϕ]. For our purposes it will be
sufficient to compute this EAA at ξ = 0: �k[ϕ] ≡ �k[0;ϕ].
The RG flow for �k[ϕ] is driven by the Hessian �

(2)
k [ϕ]. In

the one-loop approximation that we shall use, this is equal
to

S(2)[ϕ]αβ = 1

f 2

(−� hαβ +Uαβ

)
, (111)

where � ≡ ∇μ∇μ, ∇μ is the covariant derivative with
respect to the Riemannian connection of hαβ , Uαβ =
−Rεαηβ∂μϕε∂μϕη. We have expressed the second varia-
tion in terms of the dimensionless background fields ϕα ,
which produces the overall factor 1/ f 2. In the one-loop
approximation the running of couplings in the r.h.s. of the
FRGE is neglected and f has to be kept fixed along the
flow.

Since geometrically SU (2) is a three-sphere with radius
two [47], the Riemann tensor can be written in the form
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Rαβγ δ = 1
2 (hαγ hβδ−hαδhβγ ). The appearance of the covari-

ant Laplacian suggests the choice of � = −� +U as argu-
ment of the cutoff kernel function. In this way the cutoff
combines with the quadratic action to produce the function
hk(�,ω) given in Eq. (7), with ω = 0.

Evaluation of the trace follows the steps outlined in Sect. 2
and one arrives at the beta functional:

∂t�k[π ] = 1

2

1

(4π)2

∫
d4x

{
k2 f 2 ∂μπα∂μπα − 1

12
k2 f 4

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)

+ 1

16
f 4
[
∂μπα∂μπα gU (−�/k2)∂νπ

β∂νπβ

+∂μπα∂μπβ gU (−�/k2)∂νπ
β∂νπα

]

+1

8
f 4
[
∂μπβ∂νπα g�(−�/k2)∂μπα∂νπβ

− ∂μπα∂νπ
β g�(−�/k2)∂μπα∂νπβ

]

+O(π6)

}
, (112)

where we have used �μν αβ = ∂μϕε∂νϕ
ηRαβεη and Eqs.

(34)–(35). The form factors gU (−�/k2) and g�(−�/k2)

correspond to gU (−�, 0, k) and g�(−�, 0, k) in the notation
of Sect. 2. It is important to stress that in the derivation of this
result no regularization was needed: the integrals we had to
perform were IR and UV finite. This is a general property of
the beta functional ∂t�k .

Another important fact to note is that the first two terms
appear in the same ratio as in the original action of Eq. (108).
This is just a consequence of the fact that the cutoff preserves
the SUL(2) × SUR(2) invariance of the theory. As a result,
in the RG flow the metric hαβ(ϕ) gets only rescaled by an
overall factor when expressed in terms of the dimensionless
field ϕ.

We see that in addition to terms of the same type of the
original action, quantum fluctuations generate new terms
with four derivatives of the fields. To this order one can write
an ansatz for the EAA that contains generic four-derivative
terms:

�k[π ] =
∫

d4x

{
1

2
∂μπα∂μπα − 1

24
f 2
k

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)
+ ∂μπα∂μπα f 4

k γU,k(�)∂νπβ∂νπβ

+ ∂μπα∂μπβ f 4
k γU,k(�)∂νπα∂νπβ

− ∂μπα∂νπβ f 4
k γ�,k(�)∂μπα∂νπβ

+ ∂μπβ∂νπα f 4
k γ�,k(�)∂μπα∂νπβ

+O(π6)

}
. (113)

Here the coupling fk and the dimensionless form factors
γU,k and γ�,k are functions of the scale k. The local parts of

the form factors γU,k(0) and γ�,k(0) can be combined as

�k[π ] =
∫

d4x

{
1

2
∂μπα∂μπα − 1

24
f 2
k

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)

+ �1,k

2
f 4
k ∂μπα∂νπ

α∂μπβ∂νπβ

+�2,k

2
f 4
k ∂μπα∂μπα∂νπβ∂νπβ + O(π6)

}
,

(114)

where

�1,k

2
= γU,k(0) + γ�,k(0) and

�2,k

2
= γU,k(0) − γ�,k(0). (115)

Up to this point we have interpreted an infinitesimal RG trans-
formation as the result of an integration over an infinitesimal
shell of momenta ak < p < k, with a = 1 − ε and ε > 0.
In the literature on the Wilsonian RG, however, this is com-
plemented by two additional transformations: a rescaling of
all momenta by a factor a and a rescaling of all fields so
that they remain canonically normalized. The rescaling of
the momenta is effectively taken into account by the rescal-
ing of the couplings f̃k = k fk , etc. We will now explicitly
implement the rescaling of the fields:

δπα = −1

2

1

(4π)2 f̃ 2 παδt . (116)

Defining ∂̂t by

∂̂t = ∂t + δπa

δt

δ

δπa
,

we obtain

∂̂t�k[π ] = 1

(4π)2

∫
d4x

{
1

24
k2 f 4

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)

+ f 4
[
∂μπα∂μπα

(
1

32
gU (−�/k2)−2 f̃ 2γU,k(�)

)

∂νπ
β∂νπβ

+∂μπα∂μπβ

(
1

32
gU (−�/k2)−2 f̃ 2γU,k(�)

)

∂νπ
β∂νπα

+∂μπβ∂νπα

(
1

16
g�(−�/k2)−2 f̃ 2γ�,k(�)

)

∂μπα∂νπβ

−∂μπα∂νπ
β

(
1

16
g�(−�/k2)−2 f̃ 2γ�,k(�)

)

∂μπα∂νπβ

]
+O(π6)

}
. (117)
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Comparing the t-derivative of Eq. (113) with Eq. (117) we
see that, by construction, the kinetic term does not change
along the RG flow while for the second term we find instead

∂̂t f
2
k = − k2 f 4

16π2 . (118)

For the non-local form factors, one obtains

∂̂tγU,k(�) = 1

16π2

1

32
gU (−�/k2),

∂̂tγ�,k(�) = 1

16π2

1

16
g�(−�/k2). (119)

In order to recover the standard perturbative result for the
effective action we integrate Eq. (117) from some initial UV
scale k = �, which we can view as the “UV cutoff”, down to
k = 0, keeping the Goldstone coupling f fixed at the value
it has in the bare action ( f�) and neglecting corrections of
order O( f 4 f̃ 2) to the flow of the form factors. In fact, from
the integration of Eq. (118) we will see that the coupling f 2

changes by a factor 1+ f̃ 2
�

32π2 , which is a number close to one
in the domain of validity of the effective field theory (even if
� ≈ f −1, f changes only by a few percent). Thus we have

��−�0 =
∫ �

0

dk

k
∂̂t�k[π ]

=
∫ �

0

dk

k

∫
d4x

{
− 1

24
∂̂t f

2
k

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)
+ f 4

[
∂μπα∂μπα∂̂tγU,k(�)∂νπ

β∂νπβ

+∂μπα∂μπβ∂̂tγU,k(�)∂νπ
β∂νπα

+∂μπβ∂νπα∂̂tγ�,k(�)∂μπα∂νπβ

−∂μπα∂νπ
β∂̂tγ�,k(�)∂μπα∂νπβ

]
+O(π6)

}
.

(120)

The effective action is then obtained by integrating Eqs. (118)
and (119). We get

f 2
� − f 2

0 =
∫ �

0

dk

k
∂̂t f

2
k = −1

2

f 4
�

16π2 �2 (121)

and

γU,�(�) − γU,0(�)

=
∫ �

0

dk

k
∂̂tγU,k(�)

= 1

32

1

16π2

(
1 − 1

2
log

−�
�2

)
, (122)

γ�,�(�) − γ�,0(�)

=
∫ �

0

dk

k
∂̂tγk,�(�)

= 1

16

1

16π2

(
2

9
− 1

12
log

−�
�2

)
. (123)

In this effective field theory approach the need to renor-
malize does not arise so much from having to eliminate diver-
gences, since � corresponds to some finite physical scale and
all integrals are finite anyway. Instead, it is dictated by the
desire to eliminate all dependence on high energy couplings,
which are unknown or only poorly known, and to express
everything in terms of quantities that are measurable in the
low energy theory.4 So, in order to eliminate the quadratic
dependence on �, we define the renormalized coupling to be

f 2
0 = f 2

� + f 4
�

32π2 �2. (124)

To get rid of the logarithmic dependence on � we define the
renormalized values of �1 and �2, introduced in Eq. (115), to
be

�1,0 = �1,� + 4

3

f 4
�

512π2 log
μ2

�2 ,

�2,0 = �2,� + 2

3

f 4
�

512π2 log
μ2

�2 . (125)

Here the couplings with subscripts � can be interpreted
as the “bare” couplings and the ones with subscripts 0 can
be interpreted as the “renormalized” ones. Notice that, once
subtracted, the quadratic dependence completely disappears,
but due to the need to compensate for the dimension of the
Laplacian in the logarithms, one has to define the renormal-
ized �1 and �2 at some (infrared) scale μ and therefore there
unavoidably remains a residual scale dependence.

After this renormalization procedure, the effective action
can be written, in perturbation theory, as a function of the
renormalized coupling:

�0[π ] =
∫

d4x

{
1

2
∂μπα∂μπα − 1

24
f 2

× (∂μπα∂μπαπβπβ − ∂μπα∂μπβπαπβ

)

+ �1

2
f 4 ∂μπα∂νπ

α∂μπβ∂νπβ

+�2

2
f 4 ∂μπα∂μπα∂νπβ∂νπβ

− 1

32

f 4

16π2 ∂μπα∂μπα

×
(

1 − 1

2
log

−�
μ2

)
∂νπβ∂νπβ

4 Ultimately, this produces the same effect, for when the high energy
parameters have been eliminated one may as well send � to infinity.

123



226 Page 16 of 24 Eur. Phys. J. C (2016) 76 :226

− 1

32

f 4

16π2 ∂μπα∂μπβ

(
1−1

2
log

−�
μ2

)
∂νπ

β∂νπα

− 1

16

f 4

16π2 ∂μπβ∂νπα

×
(

2

9
− 1

12
log

−�
μ2

)
∂μπα∂νπβ

+ 1

16

f 4

16π2 ∂μπα∂νπ
β

(
4

9
− 1

6
log

−�
μ2

)

× ∂μπα∂νπβ + O(π6)
}

, (126)

where we have eliminated the subscripts from the couplings.
The renormalized couplings f , �1 and �2 have to be measured
experimentally, but the non-local terms are then completely
determined and constitute therefore low energy predictions
of the theory.

These non-local terms enter in the computation of the
Goldstone boson scattering amplitude A(παπβ → πσ πρ) =
A(s, t, u)δαβδσρ+A(t, s, u)δασ δβρ+A(u, t, s)δαρδβσ , which
is obtained by taking four functional derivatives of the effec-
tive action in Eq. (126) with respect to πα after performing
the analytic continuation to Minkowski space and evaluating
the expression at the particles external momenta. We get

A(s, t, u;μ) = f 2

4
s + �1

2
f 4(t2 + u2) + �2 f

4s2

−1

3

f 4

512π2

(
2s2 log

−s

μ2 + t (t − u) log

−t

μ2 + u(u − t) log
−u

μ2

)
, (127)

where s = (p1 + p2)
2, t = (p1 + p3)

2 and u = (p1 + p4)
2

and all momenta are taken to be incoming. This result is well
known in the literature on chiral models [45].

7 Gravity with scalar field

In this section we will consider another example of effec-
tive action for an effective field theory, namely a scalar cou-
pled minimally to gravity. As first argued in [56,57] and
confirmed by explicit calculations [58,59] low energy grav-
itational scattering amplitudes can be calculated unambigu-
ously in this effective field theory, in spite of its perturbative
non-renormalizability. The reason is that low energy effects
correspond to non-local terms in the effective action that are
non-analytic in momentum. Such terms are not affected by
the divergences, which manifest themselves as terms ana-
lytic in momentum. Here we shall follow the logic of pre-
vious chapters and derive the terms in the effective action
containing up to two powers of curvature, by integrating the
flow equation. There have been several calculations of diver-
gences for a scalar coupled to gravity, including also a generic

potential [60–63]. As we shall see, some of these terms are
related to the low energy ones by simple properties, so that
the two calculations partly overlap. From a different point
of view, the flow of scalar couplings due to gravity has also
been discussed in [64], and with the aim of establishing the
existence of an UV fixed point, in [65,66]. Previous appli-
cation of the FRGE to the calculation of some terms in the
gravitational EA have been given in [67–71].
Action All calculations will be done in the Euclidean field
theory. We will study the flow of the EAA driven by an action
of the form

�k[h, C̄,C; g] = SH [g + h] + Sm[g + h, φ] + Sg f [h; g]
+Sgh[h, C̄,C; g], (128)

where hμν is the metric fluctuation, C̄μ and Cμ are anti-
commuting vector ghosts for diffeomorphisms, gμν is the
background metric. The term

SH [g + h] = − 1

κ

∫
dd x
√

det(g + h)R(g + h), (129)

with κ = 16πG, is the Hilbert action,

Sm[g + h, φ] =
∫

dd x
√

det(g + h)

×
[

1

2
(g + h)μν∂μφ∂νφ + V (φ)

]
(130)

is the matter action and

Sg f [h; g] = 1

2

∫
dd x

√
gχμχμ , with

χμ = ∇νhμν − 1

2
∇μh (131)

is the Feynman–de Donder-type gauge-fixing term (the gauge
parameter α is set to one). We will only need the ghost action
for h = 0, in which case it has the form

Sgh[0, C̄,C; g] =
∫

dd x
√
g C̄μ

(−�δμ
ν − Rμ

ν

)
Cν . (132)

The covariant derivative ∇ and the curvature R are con-
structed with the background metric and we denote � =
∇μ∇μ.

Using Eq. (5), this action generates all possible
diffeomorphism-invariant terms. We retain only those that
are quadratic in ”curvatures”, where we include among cur-
vatures the Riemann tensor and its contractions, terms with
two derivatives acting on one or two scalar fields the poten-
tial and its derivatives.5 Within this class of EAA’s we can
calculate the RG flow and integrate it analytically to obtain
an EA, which consists of both local and non-local terms. In

5 To some extent this parallels the treatment of mass terms in chiral
perturbation theory.
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a more accurate treatment these new terms would all con-
tribute to the r.h.s. of the flow equation, but such calculations
would be far more involved.
Hessian Arranging the fluctuation fields hμν , δφ in a d(d +
1)/2 + 1-dimensional column vector δ�, the total quadratic
part can be written as

1

2κ

∫
dd x

√
g δ�T

H δ�

= 1

2κ

∫
dd x

√
g
(
hαβ δφ

) (H
αβμν

H
αβ ·

H
·μν

H
· ·
)(

hμν

δφ

)

(133)

where the dot refers to the components in the space spanned
by δφ. The Hessian H has the form

H = K(−�) + 2Vδ∇δ + U. (134)

The coefficient of the second-derivative term is a quadratic
form in field space,

K =
(
K αβμν 0

0 κ

)
(135)

where

K αβμν = 1

2

(
δαβ,μν − 1

2
gαβgμν

)

= 1

4

(
gμαgνβ + gναgμβ − gαβgμν

)
(136)

is the DeWitt metric. (We denote by δαβ
μν the identity in the

space of symmetric tensors.) Furthermore,

V
δ =

(
0 −κK αβγ δ∇γ φ

κKμν γ δ∇γ φ 0

)
, (137)

U =
(

Uαβμν 1
2κgαβV ′(φ)

2κKμνγ δ∇γ ∇δφ + 1
2κgμνV ′(φ) κV ′′(φ)

)
,

(138)

with

Uαβμν = K αβμνR + 1

2
(gμνRαβ + Rμνgαβ)

−1

4

(
gαμRβν + gανRβμ + gβμRαν + gβνRαμ

)

−1

2
(Rαμβν + Rανβμ) + κ

[
−1

2
K αβμν(∇φ)2

−1

4
(gαβ∇μφ∇νφ + gμν∇αφ∇βφ)

+1

4

(
gαμ∇βφ∇νφ + gαν∇βφ∇μφ

+gβμ∇αφ∇νφ + gβν∇αφ∇μφ
)− K αβμνV

]
.

(139)

It is convenient to extract an overall factor of K and write the
Hessian as H = K� where

� = I(−�) + 2Yδ∇δ + W (140)

is a linear operator in field space and therefore has the index
structure

� =
(

�αβ
μν �αβ

·
� ·μν � ··

)
. (141)

The coefficients in the operator � are related to those of the
Hessian by Y

δ = K
−1

V
δ , W = K

−1
U, where

K−1
μν

αβ = 2δμν
αβ − 2

d − 2
gμνg

αβ . (142)

Note W need not to be symmetric, in fact the question is
not even well posed because of the different position of the
indices. Explicit calculation leads to the following expres-
sions:

Y
δ =

(
0 −κδαβ

γ δ∇γ φ

Kμν γ δ∇γ φ 0

)
, (143)

W =
(

Wαβ
μν − 2

d−2κgαβV ′(φ)

2Kμν γ δ∇γ ∇δφ + 1
2g

μνV ′(φ) V ′′(φ)

)
,

(144)

where

Wαβ
μν = 2Uαβ

μν − d − 4

d − 2
gαβ[

Rμν − 1

2
R gμν − κ

2

(
∇μφ∇νφ − 1

2
gμν(∇φ)2

)]

−κ

2
gαβg

μνV . (145)

Completing the square In order to use the standard heat ker-
nel formulae for minimal Laplace-type operators, we have to
eliminate the first-order terms Y ·∇. This can be achieved by
absorbing them in a redefinition of the covariant derivative:
∇̃μ = ∇μI − Yμ. Then � in (141) can be rewritten as

� = −∇̃μ∇̃μ + W̃ (146)

W̃ = W − ∇μY
μ + YμY

μ. (147)

To compute W̃ we need the following intermediate results:

∇μY
μ =

(
0 −κ∇α∇βφ

Kμν γ δ∇δ∇γ φ 0

)
,

YμY
μ =

(−κδαβ
γ δKμν ε

δ∇γ φ∇εφ 0
0 −κ(∇φ)2

)
(148)

and

Kγ δ
εδ = d

4
δε
γ δαβ

γ δKμν ε
δ∇γ φ∇εφ

= −1

2
δ
(μ

(α ∇β)φ∇ν)φ + 1

4
gμν∇αφ∇βφ. (149)
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Collecting, we find

W̃ =
(
Aαβ

μν Bαβ

Cμν D

)
(150)

with

Aαβ
μν = Wαβ

μν − 1

2
κδ

(μ

(α ∇β)φ∇ν)φ + 1

4
κgμν∇αφ∇βφ

Bαβ = − 2

d − 2
κgαβV

′(φ) + κ∇α∇βφ

Cμν = Kμν αβ∇α∇βφ + 1

2
gμνV ′(φ)

D = −κ(∇φ)2 + V ′′(φ).

The curvature of covariant derivatives, �̃μν = [∇̃μ, ∇̃ν], is
related to the curvature of the original covariant derivative,
� = [∇μ,∇ν] by

�̃μν = �μν − ∇μYν + ∇νYμ + YμYν − YνYμ. (151)

To compute �̃κλ we need

2∇[κYλ] =
(

0 −2κδαβ
γ δg[λ|δ|∇κ]∇γ φ

2Kμν γ δg[λ|δ|∇κ]∇γ φ 0

)

(152)

and

2Y[κYλ] =
(−2κδαβ γ [κ Zμν

|ε|λ]∇γ φ∇εφ 0
0 0

)
. (153)

Then we find

�̃κλ =
(

(�̃κλ)αβ
μν (�̃κλ)αβ

·
(�̃κλ) ·μν 0

)
, (154)

where

(�̃κλ)αβ
μν = (�κλ)αβ

μν − 2κδαβ γ [κ|Kε|λ]μν∇γ φ∇εφ,

(�̃κλ)αβ
· = 2κδαβ

γ δg[λ|δ∇|κ]∇γ φ,

(�̃κλ) ·μν = −2Kμν γ δg[λ|δ∇|κ]∇γ φ.

Heat kernel coefficients We compute first the local heat ker-
nel coefficients of the operator �, using (12). The first two
are

tr b0(�) = 11 ,

tr b2(�) = −25

6
R + 2κ((∇φ)2)2 − V ′′ + 10κV . (155)

For the calculation of b4 we need a few preliminary results.
Using tr I = 11 and defining P = W̃ − R

6 I, the heat kernel
coefficient (12) can be rewritten, in four dimensions, in the
more compact form

tr b4(�) = 11

180
(Riem2 − Ric2) + 1

2
trP2 + 1

12
tr�̃2. (156)

In the evaluation of the last two terms we use the following
traces:

trP2 = tr W̃2 − 1

3
R tr W̃ + 11

36
R2 ,

tr W̃ = Aμν
μν + D ,

Aμν
μν = 6R − κ(∇φ)2 − 10κV ,

tr W̃2 = Aμν
αβ Aαβ

μν + 2BαβC
αβ + D2,

Aμν
αβ Aαβ

μν = 3Rμνρσ R
μνρσ − 6RμνR

μν + 5R2

−3

2
κR(∇φ)2 − 12κV R

+7

4
κ2((∇φ)2)2 + 2κ2V (∇φ)2 + 10κ2V 2,

BαβC
αβ = κV ′∇2φ − 2κV ′2

+1

2
κ∇μ∇νφ∇μ∇νφ − 1

4
κ(∇2φ)2,

1

2
trP2 = 3

2
Riem2 − 3Ric2 + 119

72
R2

+11

8
κ2∇αφ∇αφ∇βφ∇βφ

−1

4
κ∇2φ∇2φ + 1

2
κ∇β∇αφ∇β∇αφ

+κ

(
κV (φ) − 5

12
R − V ′′(φ)

)
∇αφ∇αφ

+κV ′(φ)∇2φ + 5κ2V 2(φ) − 13

3
κR V (φ)

−2κV ′(φ)2 − R

6
V ′′(φ) + V ′′(φ)2

2
.

For the last term in (156) we need

tr �̃μν�̃
μν = (�̃μν)αβ

γ δ(�̃μν)γ δ
αβ

+2(�̃μν)αβ(�̃μν)αβ, (157)

where

(�̃μν)αβ
γ δ(�̃μν)γ δ

αβ = −6Rμνρσ R
μνρσ

+κR(∇φ)2 + 2κRμν∇μφ∇νφ

−3

2
κ((∇φ)2)2

×2(�̃μν)αβ(�̃μν)αβ

= κ((∇2φ)2 − 4∇μ∇νφ∇μ∇νφ).

We thus arrive at

tr b4(�) = 191

180
Riem2 − 551

180
Ric2 + 119

72
R2

+5

4
κ2((∇φ)2)2 − 1

6
κ∇2φ∇2φ

+1

6
κ∇β∇αφ∇β∇αφ + 1

6
κRαβ∇αφ∇βφ

+κ

(
κV (φ) − 1

3
R − V ′′(φ)

)
(∇φ)2

+κV ′(φ)∇2φ
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+5κ2V 2(φ) − 2κV ′(φ)2 − 13

3
κR V (φ)

− R

6
V ′′(φ) + V ′′(φ)2

2
.

Using the relations

1

6
Rαβ∇αφ∇βφ − 1

6
∇2φ∇2φ + 1

6
∇β∇αφ∇β∇αφ = 0,

(158)

− V ′′(φ)(∇φ)2 + V ′(φ)∇2φ = −2V ′′(φ)(∇φ)2, (159)

Rμνρσ R
μνρσ = 4RμνR

μν − R2, (160)

which hold under an integral modulo surface terms, one can
rewrite

tr b4(�) = 71

60
Ric2 + 71

120
R2

−1

3
κR(∇φ)2 − 13

3
κR V (φ) − 1

6
RV ′′(φ)

+5

4
κ2((∇φ)2)2

+κ2V (φ)(∇φ)2 − 2κV ′′(φ)(∇φ)2

+5κ2V 2(φ) − 2κV ′(φ)2

+V ′′(φ)2

2
. (161)

The non-local heat kernel can be computed from Eq. (17).
Using again the traces given above, the coefficient of s2 is
found to be

Rμν(11 fRic + 6 fU − 24 f�)Rμν

+ R(11 fR + 6 fRU + 2 fU + 6 f�)R

+ κR

(
−2 fRU − 3

2
fU + f�

)
(∇φ)2 + 2κRμν f�∇μφ∇νφ

+ R fRU V ′′ + κR(−10 fRU − 12 fU )V

+ κ∇μ∇νφ( fU − 4 f�)∇μ∇νφ + κ∇2φ

(
−1

2
fU + f�

)
∇2φ

+ 2κ∇2φ fU V ′ − 2κ(∇φ)2 fU V ′′

+ 2κ2V fU (∇φ)2 − 4κV ′ fU V ′ + V ′′ fU V ′′

+
(

11

4
fU − 3

2
f�

)
κ2
(
(∇φ)2

)2 + 10κ2V fU V . (162)

Using the expansion (20) one can check that the local part of
this expression agrees with (161).

One can compute in a similar way the heat kernel of the
ghost operator (�gh)

ν
μ = −∇2δν

μ − Rν
μ. We find, in four

dimensions, the local heat kernel coefficients

tr b0(�gh) = 4; tr b2(�gh) = −1

3
R;

tr b4(�gh) = 7

30
RμνR

μν + 17

60
R2, (163)

where we used again (160). The coefficient of s2 in (17) is

Rμν(4 fRic + fU − 4 f�)Rμν + R(4 fR − fRU + f�)R.

(164)

We are now ready to write the flow equation.

Flow equations We write the one-loop flow equation for the
“single metric” bEAA �k[g] ≡ �k[0, 0, 0; g]. It consists of
two terms:

∂t�k[g] = 1

2
Tr

∂t Rk(�)

� + Rk(�)
− Tr

∂t Rk(�gh)

�gh + Rk(�gh)
. (165)

The first comes from the graviton and scalar fluctuations,
the second from the ghosts. Using Eq. (21) and the heat kernel
discussed in the previous section, the flow equation for the
bEAA is

∂t�k[g] = 1

32π2

∫
d4x

√
g
{

3k4 + k2

×
(

−29

3
R + 4κ(∇φ)2 − 2V ′′ + 20κV

)

+ Rμν g1(z̃) R
μν + Rg2(z̃)R

+ κRg3(z̃)(∇φ)2 + κRμνg4(z̃)∇μφ∇νφ

+ Rg5(z̃)V
′′

+ κRg6(z̃)V

+ κ∇μ∇νφ g7(z̃)∇μ∇νφ + κ∇2φ g8(z̃)∇2φ

+ κ2(∇φ)2g9(z̃)(∇φ)2

+ κ∇2φ g10(z̃)V
′ − κ(∇φ)2g10(z̃)V

′′

+ κ2(∇φ)2g10(z̃)V

− 2κV ′g10(z̃)V
′ + 1

2
V ′′g10(z̃)V

′′

+ 5κ2Vg10(z̃)V
}

, (166)

where the functions ga , a = 1, . . . , 10, are linear combi-
nations of the functions gRic, gR , gU , gRU , g� given in the
second column of the following table:

a ga Aa Ba Ca

1 3gRic + 4gU − 16g�
43
30 − 148

15 − 8
5

2 3gR + 2gU + 8gRU + 4g�
1

20
37
5

1
5

3 −2gRU − 3
2 gU + g� − 2

3 − 2
3 0

4 2g�
1
3

4
3 0

5 gRU − 1
3

2
3 0

6 −10gRU − 12gU − 26
3 − 20

3 0
7 gU − 4g�

1
3 − 8

3 0
8 − 1

2 gU + g� − 1
3

2
3 0

9 11
4 gU − 3

2 g�
5
2 −1 0

10 2gU 2 0 0
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Note that only the first two receive contributions from the
ghosts. Next we recall that using the optimized cutoff, the
functions gRic, …, g� are given by Eqs. (31)–(35). In the
present case there is no dependence on ω, so dropping this
argument the functions ga(z̃) = ga(z, k) can all be written
in the form

ga(z̃) = Aa+
(

−Aa + Ba

z̃
+ Ca

z̃2

)√
1 − 4

z̃
θ(z̃−4) , (167)

where the coefficients Aa , Ba , andCa are given in the remain-
ing columns of the table above.

Integration of the flow We have found that the classical
action (128) generates the flow (166). The flow is finite but
integrating over k up to some scale � and taking the limit
� → ∞ it generates divergences in the effective action. The
first line is proportional to terms that are already present in
the action and, upon integration over k, correspond to quartic
and quadratic divergences. The remaining terms were not
originally present in the action. Equation (167) allows us to
split these terms into local parts (the first term) and non-local
parts (the rest). The local parts correspond to logarithmic
UV divergences. The non-local parts vanish for k2 > z/4,
signalling its infrared character.

The new terms in the flow equation force us to consider
a more general class of EAA’s that, in addition to the terms
that were originally present in (128) also contains for each
ga(z̃) ≡ ga(z, k), a = 1, . . . , 10, in (166), a corresponding
form factor fa,k(z). In principle all the terms in the last two
lines of (166) could appear with different couplings, but in
the present truncation they all renormalize in the same way.
The functions ga are the beta functions of the form factors
fa :

∂t fa,k(z) = 1

32π2 ga(z̃). (168)

Even though our main interest is in infrared physics, it is
useful to consider first the divergent part of the action. For a
fixed z and for k2 > z/4, the step function in (167) vanishes.
In this case the integration of the flow only gives power and
logarithmic terms. We find for large �

��[g] = 1

32π2

∫
d4x

√
g
{

3�4

+
(

−29

3
R + 4κ(∇φ)2 − 2V ′′ + 20κV

)
�2

+
(

43

30
RμνR

μν + 1

20
R2 − 2

3
κR(∇φ)2

−26

3
κR V (φ) − 1

3
RV ′′(φ)

+5

2
κ2((∇φ)2)2 + 2κ2V (φ)(∇φ)2

−4κV ′′(φ)(∇φ)2

+10κ2V 2(φ) − 4κV ′(φ)2 + V ′′(φ)2
)

log

(
�2

μ2

)

+finite terms
}

, (169)

where we have introduced an arbitrary renormalization scale
μ. The last three lines agree with the results of [63], spe-
cialized to a single component field. The finite terms have
the same structure as the ones that are written but with
�-independent, finite, coefficients. These correspond to the
arbitrariness in the choice of the initial conditions for the
flow.

We now integrate the flow equations from the UV scale
� down to zero. The first line in (166), which depends on
powers of the cutoff scale k, produces simply the terms in
the first line of (169).

Next we discuss the logarithmic terms. For each form fac-
tor the integration is to be performed keeping z fixed. For a
generic IR scale k we have

fa,�(z) − fa, k(z) = 1

32π2

∫ �

k

dk′

k′ ga
( z

k′2
)

= 1

64π2

∫ z/k2

z/�2

du

u
g̃a(u), (170)

where in the second step we changed variables of integration
to u = z/k2. Now we insert the explicit form (167). We
assume that z/�2 � 4 and z/k2 � 4. The integration can
be done explicitly and in the limit k → 0 one finds

fa,0(z) = fa,�(z) − Aa

64π2 log

(
�2

μ2

)

+ Aa

64π2 log

(
z

μ2

)
− 1

32π2

(
Aa + Ba

12
+ Ca

120

)
.

(171)

Note the following fact: if we had just integrated the local
part of the form factor, namely the first term in (167), from
k to �, we would have obtained A

32π2 log(�2/k2), which is
both UV and IR divergent. When we integrate the full form
factor, for k → 0 in (167) z̃ becomes large, the theta function
is one and the square root tends to one, so that the A-terms
cancel. Thus, by integrating the full non-local form factor,
we obtain a result that is UV divergent but IR finite.

While the non-local terms are finite and entirely unam-
biguous, the local terms in the effective action �0 are not
fixed and have to be determined by matching the form of the
EA with experimental data. This is achieved by means of
renormalization conditions. In the present formalism, these
correspond to the choice of ��.

The initial conditions for the form factors can be chosen
to eliminate the �-dependence in the EA. This requires

fa,�(z) = Aa

64π2 log

(
�2

μ2

)
+ γa, (172)
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where γa are arbitrary constants, corresponding to the finite
terms in (169). Then the form factors in the EA are

fa,0(z) = Aa

64π2 log

(
z

μ2

)

+γa − 1

32π2

(
Aa + Ba

12
+ Ca

120

)
, (173)

and the EA has the form

�0[g] = 1

32π2

∫
d4x

√
g

{
43

30
Rμν log

(−�
μ2

)
Rμν

+ 1

20
R log

(−�
μ2

)
R

−2

3
κR log

(−�
μ2

)
(∇φ)2

+1

3
κRμν log

(−�
μ2

)
∇μφ∇νφ

−1

3
R log

(−�
μ2

)
V ′′

−26

3
κR log

(−�
μ2

)
V

+1

3
κ∇μ∇νφ log

(−�
μ2

)
∇μ∇νφ

−1

3
κ∇2φ log

(−�
μ2

)
∇2φ

+5

2
κ2(∇φ)2 log

(−�
μ2

)
(∇φ)2

+2κ∇2φ log

(−�
μ2

)
V ′

−2κ(∇φ)2 log

(−�
μ2

)
V ′′

+2κ2(∇φ)2 log

(−�
μ2

)
V

+10κ2V log

(−�
μ2

)
V

−4κV ′ log

(−�
μ2

)
V ′ + V ′′ log

(−�
μ2

)
V ′′

+local terms} . (174)

The local terms are operators of the form appearing in
(169), with arbitrary finite coefficients. These coefficients
are related to the “bare” couplings by renormalization con-
ditions. To discuss them it is more transparent to specify the
form of the potential, e.g.

V (φ) = E + 1

2
m2φ2 + 1

24
φ4.

Recalling that all the couplings in the EAA are k-dependent,
we denote by subscripts � and 0 the “bare” and “renormal-
ized” couplings, respectively. Then we find that the terms that
are already present in the action are renormalized as follows:

E0 = E� + 1

32π2

[
3�4 + (20κE − 2m2)�2

+(10κ2E2 + m4) log

(
�2

μ2

)]
(175)

1

2
m2

0 = 1

2
m2

� + 1

32π2

[
(10m2κ − λ)�2 + (10κ2Em2

−4κm4 + m2λ) log

(
�2

μ2

)]
(176)

1

24
λ0 = 1

24
λ� + 1

32π2

[
20

24
λκ�2 +

(
5

2
κ2m4

+5

6
λκ2E − 2

9
λκm2 + 1

4
λ2
)

log

(
�2

μ2

)]
, (177)

Z0 = 1 + 1

32π2

×
[

4κ�2 +
(

2κ2E − 4κm2
)

log

(
�2

μ2

)]
. (178)

The renormalization of Newton’s constant is given by

1

κ0
= 1

κ�

− 1

32π2

[
29

3
�2 +

(
−26

3
κE − 1

3
m2
)

log

(
�2

μ2

)]
.

(179)

In addition the following terms, not initially present in the
action, are generated:

ξ2φ
2R + ξ4φ

4R + τ(∇φ)2R + w(∇φ)4

+ αR2 + βRμνR
μν, (180)

with effective couplings

ξ2 = 1

32π2

(
−13

3
κm2 − 1

6
λ

)
log

(
�2

μ2

)
, (181)

ξ4 = − 1

32π2

13

36
κλ log

(
�2

μ2

)
, (182)

τ = − 1

32π2

2

3
κ log

(
�2

μ2

)
(183)

w = 1

32π2

5

2
κ2 log

(
�2

μ2

)
, (184)

α = 1

32π2

1

20
log

(
�2

μ2

)
, (185)

β = 1

32π2

43

30
log

(
�2

μ2

)
. (186)

The last term in (181) is due entirely to scalar loops and would
also be present if gravity was treated as an external field. In
this context this term has been discussed several times in the
literature; for example, see [72,73].

We note that all the renormalized couplings depend on
the reference scale μ. This dependence encodes a different
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notion of renormalization group. For the cosmological con-
stant and Newton’s constant this has been discussed e.g. in
[74–77].

Finally let us comment on the finite local terms in (174).

The choice γa = 1
32π2

(
Aa + Ba

12 + Ca
120

)
has the effect that

all the local terms vanish. The choice γa = 0 leaves a resid-
ual finite term that can easily be calculated from (173) and
the table. For example the first term in the last line of (166)
would leave in this case 1

8π2 κm4φ2. We see that the grav-
itational correction to the scalar mass is suppressed by the
ratio (m/MPlanck)

2, as one would naturally guess from the
weakness of gravity at low energy. In any case the constants
γa cannot be calculated but have to be fixed by comparison
to experiment.

From the point of view of the effective field theory
approach, the action (174) contains part of the terms needed
to reconstruct the scalar–graviton vertex in a perturbative
expansion about flat space. More precisely, it contains the
terms with two generalized curvatures, which correspond
to Feynman diagrams with a three-graviton and two-scalar–
two-graviton vertices. Other contributions corresponding to
triangle diagrams are encoded in terms with three generalized
curvatures, which we have not evaluated.

8 Conclusions

We have presented several calculations of one-loop effective
actions in quantum field theories of increasing complexity:
from a simple linear scalar field to gauge theories (QED and
non-abelian Yang–Mills theory), to chiral sigma models and
finally to gravity coupled to a scalar. In each case we have
derived the first few terms in an expansion of the action in
powers of generalized “field strengths”, meaning either the
potential or curvatures.

Instead of calculating directly a functional integral, we
have obtained the effective action following Wilson’s idea of
integrating out field modes one momentum shell at a time.
The FRGE gives us a formula for the “beta functional” of
the theory, i.e. the derivative of the EAA �k with respect
to the cutoff k. The ordinary effective action is recovered
by integrating the flow from some initial condition �� at a
UV scale k = � down to k = 0. The choice of �� cor-
responds to the choice of renormalization conditions. The
main conceptual advantage of the method used here is that
one never encounters divergent quantities. The r.h.s. of the
flow equation (3) is both ultraviolet- and infrared-finite, due
to the fall-off properties of the cutoff term (1). To be sure, the
divergences of the QFT are still present: they appear if one
tries to send � → ∞, which corresponds to integrating the
flow equation towards the UV. However, they appear only in
this final stage of the integration and they do not arise as an

obstacle in the calculation of the effective action. By post-
poning the integration over the momentum cutoff � to the
last step, the structure of the QFT is conceptually clearer, not
being marred by the issue of the divergences.

Ideally, in this program, one would like to use the exact
FRGE (3). In practice, one has to make some approximation.
Here we have restricted ourselves to the one-loop approxi-
mation, which amounts to keeping �k = �� in the r.h.s. of
the FRGE. This approximation is dictated by the current sta-
tus of the techniques for calculating functional traces, which
allow us to compute the trace of a function of a Laplace-type
operator. This is the case when �k is a local functional of
the fields containing up to two derivatives. Integration of the
FRGE immediately generates all sorts of operators, includ-
ing non-local terms, which would lead outside the domain of
applicability of current heat kernel techniques.

Another limitation of the work presented here is that we
studied mainly terms up to quadratic in field strengths in
the effective action; however, we got their exact one-loop
momentum dependence. This was motivated by our main
interest in models of particle physics, where only few parti-
cles scatter at a time. Of course, we admit that general one-
loop effective action (in any interacting QFT) possesses the
structure with operators up to infinitely many derivatives as
well as infinitely many curvatures. Again due to the com-
putational techniques used we restricted ourselves to the
simplest case of terms up to quadratic in curvatures. How-
ever, within this approximation, we were able to find some
scattering amplitudes, like a four-point one in scalar field
theory.

Still, within the one-loop approximation, we have been
able to derive the flow equations for the non-local structure
functions, which upon integration give non-trivial finite parts
of the effective action. The origin of these non-local terms
from the IR part of the momentum integration, and their inde-
pendence of UV physics, is particularly transparent. Another
application of such an alternative method of computation
leading to EA is that the one-loop approximation can be taken
as a first step towards a reformulation of the QFT, where non-
perturbative effects are taken into account. As an example of
such computations, in [27] the running of the couplings in
the r.h.s. of the flow equation for three-dimensional scalar
theory has been taken into account, improving the calcula-
tion of Sect. 3. This leads to a different expression for the
four-point amplitude that is automatically finite also in the
limit � → ∞, curing both the UV and the IR divergences. It
would be very interesting to perform this type of calculation
also for the other models considered here.
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