156 research outputs found

    Managing Carbon Aspirations: The Influence of Corporate Climate Change Targets on Environmental Performance

    Get PDF
    Addressing climate change is among the most challenging ethical issues facing contemporary business and society. Unsustainable business activities are causing significant distributional and procedural injustices in areas such as public health and vulnerability to extreme weather events, primarily because of a distinction between primary emitters and those already experiencing the impacts of climate change. Business, as a significant contributor to climate change and beneficiary of externalizing environmental costs, has an obligation to address its environmental impacts. In this paper, we explore the role of firms’ climate change targets in shaping their emissions trends in the context of a large multi-country sample of companies. We contrast two intentions for setting emissions reductions targets: symbolic attempts to manage external stakeholder perceptions via “greenwashing” and substantive commitments to reducing environmental impacts. We argue that the attributes of firms’ climate change targets (their extent, form, and time horizon) are diagnostic of firms’ underlying intentions. Consistent with our hypotheses, while we find no overall effect of setting climate change targets on emissions, we show that targets characterized by a commitment to more ambitious emissions reductions, a longer target time frame, and absolute reductions in emissions are associated with significant reductions in firms’ emissions. Our evidence suggests the need for vigilance among policy-makers and environmental campaigners regarding the underlying intentions that accompany environmental management practices and shows that these can to some extent be diagnosed analytically

    Risk factors for bone mineral density at the calcaneus in 40–59 year-old male workers: A cross-sectional study in Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few epidemiologic studies have attempted to investigate the prevalence and risk factors for osteopenia and osteoporosis in middle-aged Asian men. We performed this study to determine the prevalence and risk factors of osteopenia and osteoporosis in this population.</p> <p>Methods</p> <p>This cross-sectional study was conducted from March to July, 2004. The subjects were 2,073 males aged from 40 to 59 years in the KHNP (Korea Hydro & Nuclear Power) workplace-based cohort. Bone mineral density (BMD) was measured by peripheral, dual-energy, X-ray absorptiometry (DXA) at the calcaneus. Anthropometric and lifestyle factors were investigated using a standard, self-reported questionnaire.</p> <p>Results</p> <p>BMD was 0.60 ± 0.09 g/cm<sup>2 </sup>(mean ± standard deviation) and was negatively correlated with age (r = -0.18, <it>P </it>< 0.001), but positively correlated with waist-to-hip ratio (WHR; r = 0.15, <it>P </it>< 0.001), body fat (r = 0.10, <it>P </it>< 0.001), BMI (r = 0.35, <it>P </it>< 0.001), height (r = 0.26, <it>P </it>< 0.001), and weight (r = 0.43, <it>P </it>< 0.001).</p> <p>In multiple linear regression analysis, the independent determinants associated with BMD were increasing age (coefficient = -0.002, <it>P </it>< 0.001), physical activity (≤ 2/week vs. ≥ 3/week; coefficient = 0.017, <it>P </it>< 0.001), WHR (coefficient = -0.796, <it>P </it>< 0.001), body mass index (BMI; coefficient = 0.023, <it>P </it>< 0.001) and smoking status (never vs. ever; coefficient = -0.018, <it>P </it>< 0.001).</p> <p>Conclusion</p> <p>We suggest that BMD of the calcaneus is correlated negatively with exposure to smoke and increased WHR, but positively with regular exercise and increased BMI.</p

    Selective Phosphorylation Modulates the PIP2 Sensitivity of the CaM-SK Channel Complex

    Get PDF
    Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins including ion channels through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is an important cofactor for activation of small conductance Ca2+-activated potassium channels (SK) by Ca2+-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SK channels. The PIP2-binding site resides at the interface of CaM and the SK C-terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by Casein Kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G-protein-mediated hydrolysis of PIP2

    Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome

    Get PDF
    The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An oligonucleotide microarray assayed 40 tumour samples from ER(+)/HER2(−), ER(+)/HER2(+), ER(−)/HER2(+), and ER(−)/HER2(−) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57 (8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5. Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P=0.001) and higher histological grades (P=0.049). E2F-5-positive cancers were found more frequently in ER(−)/progesterone receptor (PgR)(−)/HER2(−) cancer samples (51.9%, P=0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P=0.0012). Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers. In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(−)/PgR(−)/HER2(−) status, a basal phenotype, and a worse clinical outcome

    Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures

    Get PDF
    This narrative review considers the key challenges facing healthcare professionals and policymakers responsible for providing care to populations in relation to bone health. These challenges broadly fall into four distinct themes: (1) case finding and management of individuals at high risk of fracture, (2) public awareness of osteoporosis and fragility fractures, (3) reimbursement and health system policy and (4) epidemiology of fracture in the developing world. Findings from cohort studies, randomised controlled trials, systematic reviews and meta-analyses, in addition to current clinical guidelines, position papers and national and international audits, are summarised, with the intention of providing a prioritised approach to delivery of optimal bone health for all. Systematic approaches to case-finding individuals who are at high risk of sustaining fragility fractures are described. These include strategies and models of care intended to improve case finding for individuals who have sustained fragility fractures, those undergoing treatment with medicines which have an adverse effect on bone health and people who have diseases, whereby bone loss and, consequently, fragility fractures are a common comorbidity. Approaches to deliver primary fracture prevention in a clinically effective and cost-effective manner are also explored. Public awareness of osteoporosis is low worldwide. If older people are to be more pro-active in the management of their bone health, that needs to change. Effective disease awareness campaigns have been implemented in some countries but need to be undertaken in many more. A major need exists to improve awareness of the risk that osteoporosis poses to individuals who have initiated treatment, with the intention of improving adherence in the long term. A multisector effort is also required to support patients and their clinicians to have meaningful discussions concerning the risk-benefit ratio of osteoporosis treatment. With regard to prioritisation of fragility fracture prevention in national policy, there is much to be done. In the developing world, robust epidemiological estimates of fracture incidence are required to inform policy development. As the aging of the baby boomer generation is upon us, this review provides a comprehensive analysis of how bone health can be improved worldwide for all

    Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells

    Get PDF
    Prognosis of patients with glioblastoma (GBM) remains very poor, thus making the development of new drugs urgent. Resveratrol (Rsv) is a natural compound that has several beneficial effects such as neuroprotection and cytotoxicity for several GBM cell lines. Here we evaluated the mechanism of action of Rsv on human GBM cell lines, focusing on the role of autophagy and its crosstalk with apoptosis and cell cycle control. We further evaluated the role of autophagy and the effect of Rsv on GBM Cancer Stem Cells (gCSCs), involved in GBM resistance and recurrence. Glioma cells treated with Rsv was tested for autophagy, apoptosis, necrosis, cell cycle and phosphorylation or expression levels of key players of these processes. Rsv induced the formation of autophagosomes in three human GBM cell lines, accompanied by an upregulation of autophagy proteins Atg5, beclin-1 and LC3-II. Inhibition of Rsv-induced autophagy triggered apoptosis, with an increase in Bax and cleavage of caspase-3. While inhibition of apoptosis or autophagy alone did not revert Rsv-induced toxicity, inhibition of both processes blocked this toxicity. Rsv also induced a S-G2/M phase arrest, accompanied by an increase on levels of pCdc2(Y15), cyclin A, E and B, and pRb (S807/811) and a decrease of cyclin D1. Interestingly, this arrest was dependent on the induction of autophagy, since inhibition of Rsv-induced autophagy abolishes cell cycle arrest and returns the phosphorylation of Cdc2(Y15) and Rb(S807/811), and levels of cyclin A, and B to control levels. Finally, inhibition of autophagy or treatment with Rsv decreased the sphere formation and the percentage of CD133 and OCT4-positive cells, markers of gCSCs. In conclusion, the crosstalk among autophagy, cell cycle and apoptosis, together with the biology of gCSCs, has to be considered in tailoring pharmacological interventions aimed to reduce glioma growth using compounds with multiple targets such as Rsv

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence
    corecore