3,700 research outputs found
Recommended from our members
Neural Signatures of Spatial Statistical Learning: Characterizing the Extraction of Structure from Complex Visual Scenes
Behavioral evidence has shown that humans automatically develop internal representations adapted to the temporal and spatial statistics of the environment. Building on prior fMRI studies that have focused on statistical learning of temporal sequences, we investigated the neural substrates and mechanisms underlying statistical learning from scenes with a structured spatial layout. Our goals were twofold: (1) to determine discrete brain regions in which degree of learning (i.e., behavioral performance) was a significant predictor of neural activity during acquisition of spatial regularities and (2) to examine how connectivity between this set of areas and the rest of the brain changed over the course of learning. Univariate activity analyses indicated a diffuse set of dorsal striatal and occipitoparietal activations correlated with individual differences in participants' ability to acquire the underlying spatial structure of the scenes. In addition, bilateral medial-temporal activation was linked to participants' behavioral performance, suggesting that spatial statistical learning recruits additional resources from the limbic system. Connectivity analyses examined, across the time course of learning, psychophysiological interactions with peak regions defined by the initial univariate analysis. Generally, we find that task-based connectivity with these regions was significantly greater in early relative to later periods of learning. Moreover, in certain cases, decreased task-based connectivity between time points was predicted by overall posttest performance. Results suggest a narrowing mechanism whereby the brain, confronted with a novel structured environment, initially boosts overall functional integration and then reduces interregional coupling over time
Regionalizing healthcare: a vision for transforming Lebanon into a regional academic hub
<p>Abstract</p> <p>Background</p> <p>Lebanon suffers from a large scale emigration of physicians coupled with an oversaturation of the physician job market. Lebanon is currently witnessing an expansion of its medical education capacity with the establishment of new private medical schools, raising the fears of a worsening market oversaturation.</p> <p>Discussion</p> <p>The neighboring Arabian Gulf countries are suffering from a serious shortage of clinicians and academicians. In spite of their enormous investments in educational, clinical and research collaborative initiatives with some of the most renowned North American medical schools and institutions, their ability to recruit and retain highly qualified clinicians and academicians remains a major challenge. Lebanese universities have the opportunity to establish triangular collaborations with the Gulf regional medical centers and their North American partners. They could achieve this goal by tapping into the globalized and high quality Lebanese physician workforce and consequently regionalize healthcare delivery in the Middle East.</p> <p>Summary</p> <p>By recruiting its globalized and high quality physician workforce to establish collaborations with the Gulf regional, Lebanon could become a regional "academic hub".</p
Recommended from our members
Harmonic Force Constants for Molecular Mechanics Force Fields via Hessian Matrix Projection.
A modification to the Seminario method [ Int. J. Quantum Chem. 1996 , 60 , 1271 - 1277 ] is proposed, which derives accurate harmonic bond and angle molecular mechanics force field parameters directly from the quantum mechanical Hessian matrix. The new method reduces the average error in the reproduction of quantum mechanical normal-mode frequencies of a benchmark set of 70 molecules from 12.3% using the original method, to 6.3%. The modified Seminario method is fully automated, and all parameters are computed directly from quantum mechanical data, thereby avoiding interdependency between bond and angle parameters and other components of the force field. A complete set of bond and angle force field parameters for the 20 naturally occurring amino acids is also provided for use in the future development of protein force fields
Recommended from our members
Development and Validation of the Quantum Mechanical Bespoke Protein Force Field.
Molecular mechanics force field parameters for macromolecules, such as proteins, are traditionally fit to reproduce experimental properties of small molecules, and thus, they neglect system-specific polarization. In this paper, we introduce a complete protein force field that is designed to be compatible with the quantum mechanical bespoke (QUBE) force field by deriving nonbonded parameters directly from the electron density of the specific protein under study. The main backbone and sidechain protein torsional parameters are rederived in this work by fitting to quantum mechanical dihedral scans for compatibility with QUBE nonbonded parameters. Software is provided for the preparation of QUBE input files. The accuracy of the new force field, and the derived torsional parameters, is tested by comparing the conformational preferences of a range of peptides and proteins with experimental measurements. Accurate backbone and sidechain conformations are obtained in molecular dynamics simulations of dipeptides, with NMR J coupling errors comparable to the widely used OPLS force field. In simulations of five folded proteins, the secondary structure is generally retained, and the NMR J coupling errors are similar to standard transferable force fields, although some loss of the experimental structure is observed in certain regions of the proteins. With several avenues for further development, the use of system-specific nonbonded force field parameters is a promising approach for next-generation simulations of biological molecules
Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream
Streams draining peatlands export large quantities of carbon in different chemical forms and
are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique
information on the source and rate that carbon is cycled through ecosystems, as has recently
been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost
from peatland streams by evasion (degassing). Peatland streams also have the potential to
release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition
(bubbling) has been previously reported, diffusive emissions have not. We describe methods
that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we
investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded
from a small peatland stream draining a temperate raised mire. Methane was aged between
1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years
BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded
from the stream were derived from different source areas, with most evaded CO2 originating
from younger layers located nearer the peat surface compared to CH4. The study demonstrates
the insight that can be gained into peatland carbon cycling from a methodological
development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected
at the same time and in the same way
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
<i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging
Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a <i>C-elegans</i> model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders
Parental cultural models and resources for understanding mathematical achievement in culturally diverse school settings
This paper proposes that the theoretical concept of cultural models can offer useful insights into parental involvement in their child’s mathematical achievement and the resources they use to go about gaining information in culturally diverse learning settings. This examination takes place within a cultural-developmental framework and draws on the notion of cultural models to explicate parental understandings of their child’s mathematics achievement and what resources are used to make sense of this. Three parental resources are scrutinized: (a) the teacher, (b) examination test results, and (c) constructions of child development. The interviews with 22 parents revealed some ambiguity around the interpretation of these resources by the parent, which was often the result of incongruent cultural models held between the home and the school. The resources mentioned are often perceived as being unambiguous but show themselves instead to be highly interpretive because of the diversity of cultural models in existence in culturally diverse settings. Parents who are in minority or marginalized positions tend to have difficulties in interpreting cultural models held by school, thereby disempowering them to be parentally involved in the way the school would like
International Delegations and the Values of Federalism
Inland water sediments receive large quantities of terrestrial organic matter(1-5) and are globally important sites for organic carbon preservation(5,6). Sediment organic matter mineralization is positively related to temperature across a wide range of high-latitude ecosystems(6-10), but the situation in the tropics remains unclear. Here we assessed temperature effects on the biological production of CO2 and CH4 in anaerobic sediments of tropical lakes in the Amazon and boreal lakes in Sweden. On the basis of conservative regional warming projections until 2100 (ref. 11), we estimate that sediment CO2 and CH4 production will increase 9-61% above present rates. Combining the CO2 and CH4 as CO2 equivalents (CO(2)eq; ref. 11), the predicted increase is 2.4-4.5 times higher in tropical than boreal sediments. Although the estimated lake area in low latitudes is 3.2 times smaller than that of the boreal zone, we estimate that the increase in gas production from tropical lake sediments would be on average 2.4 times higher for CO2 and 2.8 times higher for CH4. The exponential temperature response of organic matter mineralization, coupled with higher increases in the proportion of CH4 relative to CO2 on warming, suggests that the production of greenhouse gases in tropical sediments will increase substantially. This represents a potential large-scale positive feedback to climate change
Influence of resource availability on the foraging strategies of the triangle butterflyfish chaetodon triangulum in the Maldives.
Obligate coral feeders such as many members of the Chaetodontidae family (also known as butterflyfish) often show strong preferences for particular coral species. This is thought to have evolved through natural selection as an energy-maximising strategy. Although some species remain as highly specialised feeders throughout their lifetime, many corallivores show a degree of dietary versatility when food abundance is limited; a strategy described by the optimal foraging theory. This study aimed to examine if, within-reef differences in the feeding regime and territory size of the Triangle Butterflyfish Chaetodon triangulum occurred, as a function of resource availability. Results showed that the dietary specialisation of C. triangulum was significant in both areas of low and high coral cover (χL22 = 2.52 x 102, P<0.001 and χL22 = 3.78 x 102, P<0.001 respectively). Resource selection functions (RSFs), calculated for the two main sites of contrasting coral assemblage, showed that in the resource-rich environments, only two Genera (Acropora and Pocillopora) were preferentially selected for, with the majority of other corals being actively ‘avoided’. Conversely, in territories of lower coral coverage, C. triangulum was being less selective in its prey choice and consuming corals in a more even distribution with respect to their availability. Interestingly, coral cover appeared to show no significant effect on feeding rate, however it was a primary determinant of territory size. The findings of the study agree with the predictions of the optimal foraging theory, in that where food supply is scarce, dietary specialisation is minimised and territory size increased. This results in maximising energy intake. This study represents the first scientific evidence that C. triangulum is an obligate corallivore and, as with many other butterflyfish, is therefore dependent on healthy scleractinian corals for survival.N
- …