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Abstract 

Behavioral evidence has shown that humans automatically develop internal representations 

adapted to the temporal and spatial statistics of the environment. Building on prior functional 

magnetic resonance imaging (fMRI) studies that have focused on statistical learning of temporal 

sequences, we investigated the neural substrates and mechanisms underlying statistical learning 

from scenes with a structured spatial layout. Our goals were twofold: (1) to determine discrete brain 

regions in which degree of learning (i.e., behavioral performance) was a significant predictor of 

neural activity during acquisition of spatial regularities and (2) to examine how connectivity 

between this set of areas and the rest of the brain changed over the course of learning. Univariate 

activity analyses indicated a diffuse set of dorsal striatal and occipito-parietal activations correlated 

with individual differences in participants’ ability to acquire the underlying spatial structure of the 

scenes.  In addition, bilateral medial temporal activation was linked to participants’ behavioral 

performance, suggesting that spatial statistical learning recruits additional resources from the limbic 

system. Connectivity analyses examined, across the time-course of learning, psychophysiological 

interactions with peak regions defined by the initial univariate analysis. Generally, we find that 

task-based connectivity with these regions was significantly greater in early relative to later periods 

of learning. Moreover, in certain cases, decreased task-based connectivity between time points was 

predicted by overall post-test performance. Results suggest a narrowing mechanism whereby the 

brain, confronted with a novel structured environment, initially boosts overall functional 

integration, then reduces interregional coupling over time.   
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Introduction 

Statistical learning is a powerful mechanism that operates by mere exposure to extract 

structure from the environment in a variety of domains, species, and developmental periods.  

Although statistical learning was initially directed to studies of the acquisition of various linguistic 

structures, there is now substantial evidence that statistical learning is domain-general and supports 

the acquisition of non-linguistic structures (see Aslin & Newport, 2012 for a review).  While 

language contains a high degree of statistical regularity, the visual world is also richly patterned. A 

host of behavioral studies have demonstrated that human learners exploit not only the regularities 

embedded in temporally-ordered sequences (Fiser & Aslin, 2002a; Kirkham, Slemmer, & Johnson, 

2002), but also those present in spatially structured scenes (Fiser & Aslin, 2001, 2002b, 2005). 

Since spatial information is abundant in visual input (e.g., characterizing features within objects and 

objects within scenes), learners must be equipped with neural machinery capable of generating 

internal representations of its structure. In the present work, we examine the nature of the neural 

mechanism that supports the learning of configurations of elements in complex spatial arrays. By 

exploring univariate activity and functional connectivity approaches, we simultaneously probe 

functional specialization (i.e., discrete regions of the brain that increase in BOLD response during a 

spatial learning task) and functional integration (i.e., the networks of brain areas that interact 

throughout this process; Büchel, Coull, & Friston, 1999).  

Recently, functional neuroimaging methods have been employed to examine mechanisms of 

statistical learning in the brain, but most of this work has focused on temporally-ordered 

(sequential) input (e.g., Plante, Patterson, Gomez, Almyrde, & Asbjornsen, 2015; Tremblay, Baroni, 
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& Hasson, 2013; Karuza et al., 2013; Tobia, Iacovella, Davis, & Hasson, 2012; Gheysen, Van 

Opstal, Roggeman, Van Waelvelde, & Fias, 2010, 2011; Turk-Browne, Scholl, Johnson, & Chun, 

2010; Turk-Browne, Scholl, Chun, & Johnson, 2009; Cunillera et al., 2009; Abla & Okanoya, 2008; 

Abla, Katahira, & Okanoya, 2008; McNealy, Mazziota, & Dapretto, 2006). While these studies vary 

widely (e.g., in terms of stimulus modality, complexity of the material to be learned, and duration of 

exposure), they generally implicate some combination of sensory-specific cortical areas and 

downstream association areas such as prefrontal cortex (e.g., inferior frontal gyrus, IFG), the basal 

ganglia (e.g., the dorsal striatum: caudate and putamen), and medial temporal lobe (e.g., the 

hippocampus). Indicating some degree of sensory-specific involvement, linguistic and non-

linguistic auditory learning tasks have been observed to elicit responses in the supratemporal plane, 

including portions of the superior temporal gyrus (Plante et al., 2015; Tremblay, Baroni, & Hasson, 

2013; Karuza et al., 2013; Cunillera et al., 2009; McNealy, Mazziota, & Dapretto, 2006), while 

visual learning studies have been associated with activation in non-primary regions such as the 

Lateral Occipital Complex (LOC; Turk-Browne et al., 2009) and middle occipital areas (Gheysen et 

al., 2011; Turk-Browne et al., 2010).  Though some have proposed that hippocampus and striatal 

areas can be dissociated by their timecourses (rapid versus gradual; Gheysen et al., 2010; 2011), 

another possibility is that they diverge according to their sensitivity to input modality (auditory 

versus visual). In particular, hippocampal involvement is less commonly observed in auditory 

sequence learning studies (but see Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014). 

Importantly, while we are beginning to disentangle patterns of neural activity underlying statistical 

learning of sequential information, the architecture supporting the acquisition of spatial regularities 

remains somewhat less defined. The present study addresses this gap by determining whether the 

prefrontal (particularly left IFG), dorsal striatal, and medial temporal structures that have been 



Running head: NEURAL SIGNATURES OF SPATIAL STATISTICAL LEARNING 5 

implicated in prior studies of sequence learning also support spatial statistical learning, or whether 

these substrates are instead specialized for regularities that unfold over time. 

In addition to using univariate approaches to localize regions involved in learning, we employ 

functional connectivity measures to ask how these discrete areas interact with the rest of the brain as 

learning unfolds (we henceforth refer to these interactions as whole-brain connectivity). 

Specifically, we examine whether interregional coupling changes over the course of exposure to 

structured stimuli and probe whether these time-dependent shifts in connectivity are correlated with 

learning outcomes (e.g., overall post-test performance). We also probe shifts in connectivity at the 

item-specific level, asking whether interregional coupling is modulated by trial-by-trial learning 

within-subjects. Relatively few studies have simultaneously investigated activity and functional 

connectivity during the learning phase, and results range from an inverse relationship between 

activity and connectivity (e.g., Büchel et al., 1999; McIntosh, Rajah, & Lobaugh, 1999), to a 

complementary relationship (e.g., Yang, Gates, Molenaar, & Li, 2015), to no clear relationship 

between the two (e.g., Manelis & Reder, 2012; Sun Miller, Rao, & D’Esposito, 2007). By 

integrating the results of both univariate activity and functional connectivity approaches, we offer 

insight into the neural mechanisms underlying the learning process during the acquisition of spatial 

statistics.  

 

Materials and Methods 

Participants 

A total of 31 participants ages 18−30 were originally tested in this study (all were right 

handed). Eleven of those participants were excluded on the following grounds: excess head motion 

(> 4 mm absolute motion, n = 3), incomplete or corrupted data (n = 4), or failure to respond to a 
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minimum of 70% of test trials (n = 4). Because these analyses are built on the relationship between 

neural response during learning and behavioral performance at test, it was essential to include only 

those subjects with a complete posttest dataset. Data from the remaining 20 participants (14 female, 

6 male) were analyzed. All participants had normal or corrected-to-normal vision and no history of 

neurological dysfunction. They were recruited from the Dartmouth College community, provided 

informed consent, and were compensated according to institutional guidelines.   

Stimuli 

Following the method of the behavioral experiment of Fiser & Aslin (2001), participants 

were presented with a series of visual displays: 3 x 3 grids each containing three base-pairs drawn 

from a possible inventory of six. Base-pairs were defined as two shapes consistently positioned in 

the same relative arrangement (Figure 1). They were created using a total of twelve individual 

shapes. Note that while the position of a base-pair within the grid changed from trial to trial, the 

spatial relationship between the items within a pair was perfectly predictable across the course of 

the experiment. Two of these base-pairs were oriented vertically, two horizontally, and two 

diagonally. Shapes appeared only within a base-pair and never in isolation. Base-pairs were 

combined exhaustively such that participants were exposed to the 144 possible scenes that fit within 

the 3 x 3 grid, each containing a unique arrangement of 3 different pairs, one from each orientation. 

The only information that participants could use to discern the underlying base-pair structure was 

the co-variation of the relative position of shapes within a scene.  

~~Figure 1~~ 

Procedure 

Exposure. In an event-related design, each scene was presented for 2.5 s, and the 

interstimulus interval was jittered so that a baseline fixation cross appeared on the screen for 2.5, 5, 
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or 7.5 seconds. All 144 scenes were distributed across 3 exposure runs so that subjects saw 48 

scenes per 6-minute run. Participants were instructed to attend to whichever scene was on the screen 

and were told that they may notice patterns or regularities within the grids. These instructions 

represent a slight departure from the canonical passive viewing paradigms used in other visual 

statistical learning studies. We elected to give participants a slightly more explicit task instruction 

given the challenges associated with obtaining behavioral evidence of learning in the scanner. 

Test. After the exposure phase, participants underwent a testing phase in which they were 

shown two shapes on each trial: individual base-pairs or non-base-pairs (combinations of familiar 

shapes they had not seen previously). They were instructed as follows: “The displays that you just 

saw were made by taking pairs of shapes and combining them in the grid. Now you’ll see the grid 

with just one pair of shapes in it. Half of the pairs of shapes will have been included in the practice 

displays, half are new. Decide whether the pair that you see is made up of two shapes that went 

together, in that arrangement, in the first three runs. Respond when the stimulus is on the screen.” 

Participants indicated whether or not each pair looked familiar by pressing a button in one hand for 

“yes” and in the other for “no” (counterbalanced across participants). Responses were recorded 

during the 2.5 s presentation of each base-pair and non-base-pair. ISI was again jittered at 2.5−7.5 s. 

Over the course of two randomized testing runs, 6 base-pairs and 6 non-pairs were presented in 4 

different positions within the grid, each twice. Base-pairs were presented in configurations that had 

been seen previously in the exposure phase, while non-pairs were presented in previously unseen 

configurations. As a result, the testing phase contained 96 items (48 base-pairs and 48 non-base-

pairs) and had a total duration of 12 minutes. Neuroimaging data collected at test are not presented 

here. All stimulus displays were created using one of 2 lists, with order counterbalanced across 

subjects.  
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Stimulus presentation and data collection. Visual stimuli were presented using an Apple 

G3 computer interfaced with an Epson (model ELP−7000) LCD projector. Stimuli were projected 

onto a screen located in the back end of the magnet bore. Participants viewed the screen through a 

rearview mirror mounted to the head coil. The experiment was programmed using PsyScope 1.0 

presentation software (Cohen, MacWhinney, Flatt, & Provost, 1993). Behavioral responses were 

recorded with hand-held button-boxes.  

Images were acquired using a 1.5-T scanner (General Electric Medical Systems Signa 

CV/Nvi LX8.4, Waukesha, WI), equipped with a one-channel head coil. Anatomical images were 

obtained with a high-resolution 3D SPGR sequence (124 slices, TR = 25 ms, TE = 6 ms, flip angle 

= 25°, voxel size = 1.0 x 1.0 x 1.2 mm). Functional data were collected using a gradient spin-echo 

echo-planar sequence (TR = 2500 ms, TE = 35 ms, flip angle = 90°, voxel size = 3.75mm  in-plane 

resolution). For the 3 functional scans (144 time points each), 25 T2*-weighted slices of 5.5 mm 

thickness were collected in an interleaved order.  

Analysis 

Image preprocessing and nuisance regression. Preprocessing was performed using FEAT 

v. 6.0 (fMRI Expert Analysis Tool) a component of the FSL software package (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012). To prepare the functional images for analyses, we 

performed the following steps: skull-stripping with BET to remove non-brain material, motion 

correction with MCFLIRT (FMRIB’s Linear Image Registration Tool; Jenkinson, Bannister, Brady, 

& Smith, 2002), slice timing correction (interleaved), spatial smoothing with a 8-mm 3D Gaussian 

kernel (approximately twice the size of a single voxel), and high pass temporal filtering to reduce 

low frequency artifacts. Moreover, each participant’s individual anatomical image was segmented 

into grey matter, white matter, and CSF using the binary segmentation function of FAST v. 4.0 
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(FMRIB's Automated Segmentation Tool; Zhang, Brady, & Smith, 2001). The white matter and 

CSF masks for each participant were then transformed to native functional space and the average 

timeseries was extracted. These values were included as confound regressors in our statistical 

modeling along with 6 translation and rotation parameters as estimated by MCFLIRT.  Finally, 

native image transformation to a standard template was completed using FSL’s affine registration 

tool, FLIRT (Jenkinson et al., 2002). Subject-specific functional images were co-registered to their 

corresponding high-resolution anatomical images, which were then registered to the standard MNI-

152 structural template via a 12-parameter linear transformation. 

Within-subject univariate activity analyses: Item-specific learning. We began by 

performing within-subject analyses for each of the three functional runs (“first-level analysis” 

carried out using FMRIB’s Improved Linear Model). The waveform corresponding to stimulus 

presentation was modeled by first specifying, for each timepoint, a value of 1 corresponding to each 

event. We also included a second, orthogonalized regressor capturing fluctuations in activity related 

to behavioral performance on a scene-by-scene basis (see description below). Both waveforms 

underwent gamma-convolution in order to best match it to the measured hemodynamic response 

function (SD = 3 s; mean lag = 6 s). To reduce unexplained noise, we also added in a fraction of the 

temporal derivative from the original waveform and applied a temporal filtering process.  

~~Figure 2~~ 

Generation of the scene-by-scene learning regressor. Though our task involved a 

continuous, passive viewing phase, it could be broken into discrete events, or scenes containing a 

unique combination of 3 base-pairs. In evaluating post-test performance, we observed considerable 

inter- and intra-participant variability in the acquisition of base-pair structures (i.e., some base-pairs 

were better learned than others).  Therefore, we constructed a scene-by-scene learning regressor to 
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allow us to map behavioral performance as measured after exposure onto each of the scenes 

presented during exposure (Figure 2). Capitalizing on this variability in base-pair learning, we 

generated the scene-by-scene regressor by calculating, for each participant, the hit rate for each of 

the 6 base-pairs (this was possible because each base-pair was presented a total of 8 times during 

the post-test). For each combination of 3 base-pairs in a given scene during the learning phase, we 

then computed an average accuracy score time-locked to each one of the 144 scenes displayed 

throughout exposure. Therefore, despite the absence of a canonical on-line measure of performance 

(such as reaction time), we could still capture the neural correlates of learning that emerged as 

scenes were presented during each of the three exposure runs. We were forced to exclude from this 

particular analysis two subjects with perfect scores on all base-pairs at post-test, as the inclusion of 

their behavioral performance would have led to a rank-deficient model (because the task and scene-

by-scene regressors were perfectly collinear). 

Group-level univariate activity analyses. Next, we performed a series of group-level 

analyses designed to reveal (1) regions exhibiting an effect of scene-by-scene learning across the 

entirety of exposure, as well as (2) regions exhibiting a stronger/ weaker effect depending on the 

phase of exposure. One might, for example, expect behavioral performance to be associated with 

different patterns of neural activations early in the process of learning (e.g., run 1) compared to later 

in the learning phase (e.g., run 3). In the first group-level analysis, we combined across all 3 runs 

within-participant by inputting the first-level parameter estimates of the scene-by-scene learning 

regressor into a fixed effects Generalized Linear Model (GLM). This analysis was intended to 

reveal which regions were activated on average, in contrast to subsequent analyses, which were 

intended to tease apart activity patterns that might differ between runs.  After this intermediate step, 

we combined across participants, modeling the overall group effect via FMRIB’s Local Analysis of 
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Mixed Effects (FLAME). All results presented below were first thresholded at the single voxel level 

using a Z-statistic of 1.96 (corresponding to an uncorrected two-tailed p-value of 0.05). Resulting 

clusters’ significance levels, as estimated by Gaussian Random Field theory (Worsley, 2001), were 

then compared to a cluster-forming probability threshold of 0.05. 

To delineate differences in learning-related activity between runs, the intermediate across-

run concatenation step was not performed. Instead, we performed a “tripled t-test,” or a Repeated 

Measures ANOVA containing one fixed and one random factor. In this case, the fixed factor 

contained three levels corresponding to each of the three exposure runs, plus random subject 

intercepts. First-level estimates of the scene-by-scene learning effect were entered directly into a 

FLAME mixed effects model. We specified 6 run-to-run contrasts (run 1–run 3; run 3–run 1, etc.).  

Functional connectivity analyses: Psycho-physiological interactions. We next explored 

whether functional connectivity with learning-related regions changed throughout the course of 

exposure. There are a variety of approaches to investigating the functional context in which regions 

of the brain operate.  We opted to examine psycho-physiological interactions (PPI); that is, to ask 

where in the brain correlations between regions strengthen (or weaken) during a specific condition 

(O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012).  The benefit of this approach is that 

it focuses on regions that exhibit a tighter functional association during the task of interest (in this 

case stimulus exposure relative to baseline) as opposed to those regions that are correlated in 

general, irrespective of task and, perhaps, due only to robust anatomical connections or close 

physical proximity.  

Generation of the timeseries regressors. We performed a whole-brain PPI analysis using 

seed regions that showed an effect of learning in the univariate activity analysis (scene-by-scene 

learning). As we found no significant differences in univariate activity when comparing runs, we 
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chose to define all seeds based on learning-related activation peaks when concatenating across all 

three exposure runs (Figure 3). From that map, we selected the top two activation peaks from each 

significant cluster, resulting in 4 seed ROIs (in order of intensity): mid precuneus (x = 0, y = −66, z 

= 32), right amygdala (x = 22, y = −8, z =−16), right thalamus (x = 8, y = −28, z = 0), and left 

lingual gyrus (x = −22, y = −56, z = 0). With so few studies examining spatial statistical learning, 

we selected these seed regions, defined purely functionally and limited to 2 per cluster, in order to 

offer a general snapshot of connectivity patterns uninfluenced by related literature on temporal 

statistical learning. In addition to this approach, we also chose peak intensity voxels in the dorsal 

striatum (left putamen: x = −28, y = −16, z = −4), the lateral occipital complex (left LOC: x = −46, 

y = −66, z = 18), and the right hippocampus1 (x = 30, y = –22, z = –10), as these areas have 

previously been implicated in one or more studies of temporal statistical learning (Karuza et al., 

2013; McNealy et al., 2006; Turk-Browne et al., 2009; 2010). Finally, we also generated two 

“control” seed regions in cortical areas uninvolved in this spatial statistical learning task. As prior 

work has indicated right hemisphere dominance for visual statistical learning (Roser, Fiser, Aslin, & 

Gazzaniga, 2011), we focused here on left hemisphere seeds localized to Heschl’s gyrus (x = –42, y 

= –24, z =12) and primary motor cortex (i.e., precentral gyrus: x = –36, y = –20, z = 48)2. Thus, we 

examined connectivity using 7 functionally defined regions of interest: 4 regions that were found to 

be most strongly related to the time-course of learning and 3 regions that were active, albeit less so, 

and were previously observed in statistical learning tasks. In addition, we explored connectivity 

patterns involving two control regions in presumably unrelated cortical areas.    

                                                 
1 Given the close spatial proximity of activation peaks in the right amygdala and right hippocampus 

(Table 2), we probed connectivity with the latter using the most distant activation peak with at least 

50% probability of being classified as hippocampal according to the Harvard-Oxford subcortical 

atlas. 
2 We thank our reviewer for drawing our attention to this control option. A similar pattern of results 

was also observed when examining connectivity with right Heschl’s gyrus.   
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Implementation of the PPI models. All seeds were defined in 2-mm MNI space and then 

transformed back to each subject's native functional image via their anatomical scan. Peak voxels 

were dilated using a spherical kernel with a 5 mm radius resulting in a 5-voxel ROI centered on the 

peak activation. To reduce noise in the signal, the mean time-course within the ROI was extracted 

from each subject’s filtered functional image after it had been motion-corrected and preprocessed. 

Separate first-level models were generated for each seed, and preprocessing/ registration steps were 

performed exactly as previously described. 

In the task-based version of the PPI analysis, we input for each of the 20 participants three 

explanatory variables: (1) a psychological regressor specifying stimulus event timing that was 

gamma-convolved with a hemodynamic response function. This regressor was centered such that 

the zero point fell halfway between each event and the baseline period; (2) a physiological regressor 

consisting of the filtered (pre-processed) time-course of our seed spheres, centered by subtracting 

the mean intensity across the timeseries from the intensity value at each TR; and (3) an interaction 

regressor modeling the relationship between the psychological regressor and the physiological 

regressor. While some approaches to PPI analysis (particularly in the case of event-related designs) 

recommend deconvolving the physiological timeseries, then reconvolving its interaction with the 

real-time task regressor (Gitelman, Penny, Ashburner, & Friston; 20033), we took the approach 

described in O’Reilly et al. (2012). We first convolved the task regressor, then combined it with the 

physiological timeseries extracted from the filtered neural data.  Neither this physiological regressor 

                                                 
3 More specifically, Gitelman, Penny, Ashburner, & Friston (2003) have cautioned against the 

assumption that the hemodynamic response function approximates the neuronal response in the 

context of functional connectivity analyses. While we cannot rule out that certain brain areas may 

have differing neuronal response functions, those differences should not account for changes in the 

strength of PPI effect over time, and would be more of a concern if our first-level models included 

and contrasted multiple timeseries from different regions.  
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nor the resulting interaction term was then convolved, nor did they undergo additional temporal 

filtering. This approach enabled us to examine broad shifts in task-based connectivity patterns over 

time while also relating them to between-subject variability in overall learning outcomes.  

To make contact with our initial univariate analysis (i.e., where we examined activity 

associated with learning at the within-subject level), we ran a second, nearly identical version of the 

PPI analysis that additionally included a scene-by-scene learning regressor.  An interaction 

regressor was then generated by combining this measure of item-specific variability with the 

physiological timecourse drawn from each participant’s seed spheres.  We were again required to 

exclude two subjects displaying no scene-by-scene differences in behavioral performance. Thus, we 

investigated here a different type of shift in connectivity, asking whether interregional correlations 

modulated by item-specific learning changed over the course of exposure.  

Group-level connectivity analyses. At group-level, parameter estimates for the PPI effects 

corresponding were contrasted by run, exactly as in the “tripled t-test” used to compare activity 

patterns across runs (described above for the univariate analyses). For both PPI model 

implementations, first-level interaction estimates for each participant were entered into separate 

FLAME mixed effects models comprised of random subject intercepts and a fixed factor containing 

three levels corresponding to each of the three exposure runs. We specified 6 run-to-run contrasts 

(run 1 – run 3; run 3 – run 1, etc.). We focus on the comparisons between the first and last exposure 

runs, as they represent maximally dissimilar phases of learning (early and late).  

Finally, we evaluated whether broad shifts in task-based connectivity represented a potential 

mechanism of successful knowledge acquisition at the between-subject level. To this end, we 

investigated whether differences in connectivity between the first run and the last exposure runs 

might be modulated by individual differences in overall post-test performance. Task-based PPI 
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estimates from run 1 and run 3 were entered into a group-level FLAME model containing a fixed 

categorical factor with two levels corresponding to each of the two exposure runs, a numeric post-

test regressor for each of the 20 participants (scores centered with respect to the group mean), and 

random subject intercepts. All connectivity maps were thresholded at Z > 1.96 using a cluster 

probability threshold of 0.054.  

 

Results 

Behavioral Results  

Participants successfully discriminated structured base-pairs from two-shape combinations 

lacking statistical coherence (non-base-pairs), replicating the findings of Fiser & Aslin (2001). 

When categorizing pairs as “familiar” or “unfamiliar,” participants’ overall percentage correct was 

significantly greater than chance (mean % correct = 68.07%, SD = 19.97; t(19) = 4.05, p = 0.0007). 

We also calculated a non-parametric sensitivity measure (A; Zhang & Mueller, 2005) to confirm 

that the hit rate for base-pairs differed significantly from the false alarm rate. Results indicated that 

A differed significantly from chance (mean A =  0.71, SD = 0.21, t(19) = 4.40, p = 0.0003).  

~~Figure 3~~ 

Neuroimaging Results 

Univariate activity results: Item-specific learning. In the scene-by-scene analysis we 

examined brain areas in which signal change during stimulus presentation in the learning phase was 

modulated by average base-pair learning per scene, as indicated by behavioral performance in the 

test phase. In this way, we capitalized on within-subject variability in learning of individual base-

                                                 
4 Given that connectivity analyses are likely to be particularly sensitive to the lowered signal to 

noise ratio and resolution of 1.5 T MRI data, we repeated this analysis with control seeds from 

white matter and lateral ventricles, verifying that no relationship was found between PPI effects and 

learning.  
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pairs. When combining across all runs, we observed a significant effect of this scene-by-scene 

regressor in two clusters: (1) a bilateral occipito-parietal cluster with a peak in the medial precuneus 

(extent = 3400 voxels; Z-max = 3.48 at x = 0, y = −66, z = 32, p < 0.0001); and (2) a bilateral 

subcortical cluster with a peak in the right amygdala (extent = 1581 voxels; Z-max = 3.35 at x = 22, 

y = −8, z = −16, p = 0.0086).  For a detailed breakdown of all active regions, refer to Table 1. In 

line with our hypotheses, we found that learning recruited a network of subcortical and medial 

temporal structures (Figure 3), with engagement of bilateral hippocampus (R: x = 22, y = −8, z = 

−20, Z-max = 2.96; L: x = −24, y = −14, z = −14, Z-max = 2.09) and bilateral putamen (R: x = 32, y 

= −16, z = −6, Z-max = 2.13; L: x = −28, y = −16, z = −4, Z-max = 2.46).  Interestingly, however, 

some of the strongest learning effects in the bilateral medial temporal lobe (including the peak 

voxels in cluster 2) extended beyond the hippocampus, specifically left and right amygdalae (R: see 

above; L: x = −24, y = −14, z = −12, Z-max = 2.14). A tripled t-test comparing the runs revealed no 

significant differences in either learning-related or overall task-based activation between any of the 

exposure runs.   

~~Table 1~~   ~~Figure 4~~ 

Functional connectivity results: Task-based effects. The first PPI analyses examined how 

the dynamics of interregional correlations change over the course of learning (i.e., does connectivity 

with regions associated with learning increase or decrease as a function of exposure to structured 

stimuli?). The results of the run comparison analysis were largely consistent: for all but two seeds 

we found significantly greater whole-brain connectivity for the first exposure run relative to the 

third exposure run (Figure 4 displays this result for each of our functionally defined seeds). That is, 

the strength of the PPI effect was most robust early in learning, except for the right thalamus and 

right motor cortex, which showed no changes in connectivity between the first and third runs. As 
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further illustrated in Figure 4, the root of this connectivity difference was a positive PPI effect in run 

1 (greater connectivity at task relative to baseline) and a negative PPI effect in run 3 (weaker 

connectivity at task relative to baseline). In other words, it was not the case that the PPI effects 

converged to zero over the course of exposure, but rather that the initial positive interaction between 

task and seed timecourse transitioned to a negative interaction later in learning. Table 2 summarizes 

all clusters exhibiting this significant decrease in connectivity across runs. 

We also asked whether differences in connectivity between the earliest and latest exposure 

runs was modulated by overall accuracy on the base-pair judgment task (i.e., which regions 

displayed a significant interaction between time and post-test performance). This second analysis 

enabled us to probe the functional role of connectivity patterns specifically as they relate to 

between-subject learning outcomes.  Of our 7 functionally defined seed ROIs, we found for 2 of 

them a significant interaction between time (early v. late) and overall post-test performance. For 

both the precuneus and LOC seeds, a greater drop-off in connectivity from run 1 to run 3 was 

associated with higher learning outcomes. For the LOC seed, learning-related connectivity 

decreases were observed in two anterior frontal clusters extending from the frontal pole to the 

inferior frontal gyrus (right cluster extent = 1615 voxels, Z-max = 3.08 in right frontal pole at x = 

38, y = 44, z = 2, cluster p = 0.0204; left cluster extent = 2369 voxels, Z-max = 3.79 in left frontal 

pole at x = –28, y = 42, z = –16, p = 0.0020; peak coordinates in LIFG: Z-max = 2.71 at x = –48, y 

= 18, z = 6). For the precuneus seed, this pattern was observed in a single bilateral cluster in anterior 

frontal cortex (extent = 3808, Z-max = 3.54 in left frontal pole at x = –24, y = 44, z = –14, p < 

0.0001). However, with regard to left LOC seed we also found evidence in the anterior cingulate for 

an additional negative interaction between connectivity decreases and post-test performance (extent 

= 2611 voxels; Z-max = 3.32 in right anterior cingulate at x = 2, y = 4, z = 34, p = 0.0010).  
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Finally, we found that decreases in connectivity with our two cortical control areas were also 

predictive of learning outcomes. For the seed in primary motor cortex, learning-related connectivity 

decreases were observed in a right fronto-temporal cluster (extent = 2214 voxels, Z-max = 3.41 in 

right frontal operculum at x = 46, y = 16, z = –4, p = 0.0034). A similar pattern was observed for the 

left auditory seed (right cluster extent = 2991 voxels, Z-max = 3.55 in right frontal orbital cortex at 

x = 28, y = 14, z = –22, p = 0.0003; left cluster extent = 2596 voxels, Z-max = 3.62 in left amygdala 

at x = –18, y = –2, z = –18, cluster p = 0.0010). 

 Functional connectivity results: Item-specific learning. Unlike the parallel univariate 

activity analysis, in which we found no significant differences in scene-by-scene learning between 

runs, we observed varying timecourses of item-specific connectivity dependent upon seed. This 

result also stands in contrast to our task-based connectivity analysis, which overwhelmingly 

revealed that connectivity was stronger during stimulus presentation in the first exposure run 

relative to the final exposure run. Note that the generation of a PPI regressor based on scene-by-

scene variability answers a very different sort of question; namely, at what point in exposure is 

connectivity most strongly modulated by item-specific learning (i.e., within-subject)?  Results are 

summarized in Table 3. Early in learning, we observed stronger item-specific connectivity with 

functionally defined seeds in left LOC and right amygdala. However, for functionally defined seeds 

in the left lingual gyrus, mid precuneus, and right thalamus, we found the opposite pattern: stronger 

item-specific connectivity in the third exposure run relative to the first exposure run. The left 

putamen seed displayed both trends (i.e., stronger or weaker connectivity for the first relative to the 

third exposure runs, depending on which regions cohered with the seed). This same bi-directional 

pattern of connectivity was observed in our left primary motor and auditory cortex control seeds.  

We found no differences in early/late connectivity for the right hippocampal seed.   
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Discussion 

The results presented here further inform our understanding of the neural basis of statistical 

learning, specifically for the learning of spatial patterns of shapes that comprise visual scenes. 

Similar to prior sequence learning studies, we found diffuse activation associated with the learning 

of base-pair structure that engages the basal ganglia, the medial temporal lobe, as well as sensory-

specific cortical areas such as the lateral occipital complex. In contrast to these studies, however, 

the observed medial temporal activation encompassed bilateral amygdalae in addition to the 

hippocampus. Second, functional connectivity analyses revealed that whole-brain integration with 

active regions was significantly reduced over time, and, for some seeds (including our cortical 

controls), this reduction in task-based connectivity was predictive of overall behavioral 

performance. Interestingly, this trend did not extend to the timecourse of item-specific connectivity; 

we instead observed considerable variation across seeds in the pattern of interregional coupling 

modulated by scene-by-scene learning.  

The representation of spatial information 

We begin by situating our findings with respect to neurophysiological studies of spatial 

processing and topographical learning. There has been considerable investigation into the 

representation of spatial information in the brain (e.g., in natural scenes, faces, or objects). Reports 

of both monkey physiology and human brain activity have implicated the inferior temporal cortex in 

processing complex visual objects and scenes (e.g., Sato et al., 2013; Zhang et al., 2011; Li & 

DiCarlo, 2010; Haxby et al., 2001; Op de Beeck & Vogels, 2000; Miyashita, Kameyama, 

Hasegawa, & Fukushima, 1998; Miyashita, 1993), and studies of topographical learning have 

implicated the hippocampal and parahippocampal regions (e.g., Epstein, DeYoe, Press, Rosen, & 

Kanwisher, 2001; Aguirre, Detre, Alsop, & D’Esposito, 1996). However, less work has been 
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dedicated to understanding how internal spatial representations are acquired, and topographical 

learning involves navigation through both space and time, making it difficult to disentangle the 

potential contributions of the system that learns distal spatial patterns from the system that learns 

temporal changes or associations between egomotion and visual input. Contextual cueing tasks, 

which measure learners’ ability to predict the location of an element based on its surrounding array, 

also involve a spatial memory component (Chun & Jiang, 1998). FMRI studies of this type of visual 

search task tend to implicate hippocampal regions (Giesbrecht, Sy, & Guerin, 2012; Manelis & 

Reder, 2012; Greene, Gross, Elsinger & Rao, 2007), prefrontal cortex (Pollmann and Manginelli, 

2009), and the temporo-parietal junction (Manginelli, Baumgartner, & Pollman, 2013). In sum, 

despite key differences between the current paradigm and the afore-mentioned approaches, our 

results are supported by related work on the processing and acquisition of different types of spatial 

information.   

Domain-general learning substrates 

Overall, we observed recruitment of regions similar to those engaged in sequential statistical 

learning tasks, suggesting that attunement to spatial regularities in the environment has a domain-

general neural component. Specifically, results of the scene-by-scene univariate analysis revealed 

activation in the dorsal striatum and hippocampus. Hippocampal and parahippocampal regions are 

commonly associated with visual statistical learning of temporally structured patterns (e.g., 

Schapiro et al., 2014; Gheysen et al., 2010, 2011; Turk-Browne et al., 2009, 2010), and evidence 

suggests that the basal ganglia, in certain cases along with prefrontal cortex, are similarly recruited 

during sequence segmentation tasks, regardless of the modality of the input (auditory: Plante et al., 

2015; Karuza et al., 2013; McNealy et al., 2006; visual: Turk-Browne et al., 2009).  However, here 

we found only weak evidence of left prefrontal recruitment: connectivity patterns indicated that 
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interregional coherence with prefrontal cortex (i.e., LIFG) was predictive of learning, but this region 

was not revealed by the univariate activity analyses. An examination of whether prefrontal areas 

would be more strongly activated during recognition of learned test items, as has been demonstrated 

by McNealy et al. (2006), constitutes an important area of future study. Moreover, the bilateral 

nature of the univariate activation observed here differs from other accounts, based on split-brain 

patients, that the earliest stages of statistical learning are mediated by the right hemisphere (Roser et 

al., 2011). This finding did, however, motivate the choice of hemisphere for our connectivity 

control seeds.  

Closer scrutiny of activation that covaried with learning revealed a final difference between 

studies of temporal learning and the results of this experiment: bilateral amygdalae activation. In 

humans, this region has been traditionally associated with emotional processing, typically exhibiting 

the greatest activity for stimuli with negative valence (e.g., Phelps, 2006; Bechara, Damasio, & 

Damasio, 2003). However, within the animal literature, the amygdala has been shown to work in 

concert with hippocampus and prefrontal cortex in spatial tasks requiring exploration of a novel 

environment, and it shares an anatomical as well as functional relationship with these same brain 

areas (for a review, see Richter-Levin & Akirav, 2000). In fact, injection of the stimulant 

amphetamine into rat amygdalae improved their performance on a water maze task (Packard, Cahill, 

& McGaugh, 1994). Moreover, lesioning the amygdala has the opposite effect, severely impairing 

the ability of rats to complete spatial learning tasks (Galliot, Levaillant, Beard, Millot, & Pourie, 

2010). 

Taken together, these results suggest that dorsal striatum and hippocampal areas are 

recruited regardless of the type of statistical information to be learned (sequential vs. spatial). This 

observation is consistent with behavioral findings supporting a domain-general statistical learning 
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mechanism, though of course, any domain-general learning substrate must rely on information 

transmitted from sensory cortex (e.g., the learner recruits early occipital cortex in initially sampling 

from visual displays). Moreover, we propose a unique contribution of the limbic system, 

specifically bilateral amygdalae, in supporting spatial statistical learning. To be clear, the absence of 

an experimental control condition matched for basic perceptual features of the input makes it 

challenging to disentangle the contributions of cortical and subcortical areas selectively involved in 

the learning process from areas that might more indirectly support this process. This issue is further 

highlighted by the observed pattern of connectivity results, discussed below, which revealed a 

relationship between behavioral performance and changes in interregional coordination with 

cortical areas apparently unrelated to the present task. 

Patterns of functional connectivity in learning 

Within the growing literature on task-based functional connectivity, results are beginning to 

converge on a view that across many different learning tasks, there is reduced interregional 

connectivity after learning or when encountering well-learned, well-practiced information. 

Consistent with these observations, we found for 6 of our 7 functionally defined seeds stronger task-

based connectivity early relative to later in exposure. From the first to the third exposure runs, a 

pronounced reduction in connectivity with occipital, precuneal, medial temporal, and subcortical 

seeds was evident, and this reduction was driven in part by an inverse PPI effect in run 3. Relative 

to baseline fixation, interregional links became increasingly decoupled as participants viewed the 

exposure scenes. For 2 posterior seeds, the mid precuneus and left LOC, weakened connectivity 

with frontal cortex was specifically correlated with learners’ accuracy at discriminating base-pairs 

from non-base pairs. This result is consistent with findings that the “release” of high-level 

association areas predicts reaction times on a visuomotor sequence learning task (Bassett, Yang, 
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Wymbs, & Grafton, 2015).  However, the opposite effect was found when comparing occipito-

cingulate connectivity patterns, suggesting that functional integration with learning systems may 

operate at different time scales. Further work is needed to tease apart the factors mediating this 

effect, especially given that learning-related decreases in connectivity were associated with control 

seeds not recruited during exposure (i.e., primary motor and auditory cortex, though this pattern was 

not observed for seeds placed in white matter and cerebral spinal fluid). One possible explanation 

for this finding is related to the proposal that learners decrease sampling from the environment as a 

function of exposure to structured stimuli (Karuza et al., 2016)– if such a narrowing mechanism 

indeed subserves the learning process, it might follow that dissociation over time from unneeded 

sensory-specific areas (i.e., motor and auditory cortex) would relate to increased behavioral 

performance. 

We further suggest that considering the impact of within-subject, item-specific learning (in 

addition to between-subject variation in composite measures) might prove to be an especially useful 

method for increasing our understanding of the functional role of interregional communication.  

Indeed, while the present analyses reveal a consistent decrease in task-based connectivity over time, 

connectivity modulated by trial-by-trial measures of learning varied across the course of exposure. 

In particular, item-specific connectivity with LOC and the amygdala was strongest early in the 

learning phase, while the opposite effect was observed for seeds in the lingual gyrus, precuneus, and 

thalamus. Importantly, converging evidence from both our within and between-subject measures of 

spatial statistical learning indicate that changes in functional integration, at least to the extent that 

they relate to measures of behavioral performance, are a potential mechanism of learning, not solely 

the by-product of prolonged stimulus exposure or task adaptation.  
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Previous studies have found similar decreases in task-based connectivity associated with 

better learning outcomes or the later stages of learning. After a several-day training period, Lewis, 

Baldassarre, Committeri, Romani and Corbetta (2009) found that visual and frontal cortices became 

anti-correlated when participants were at rest, and that the extent of this anti-correlation was 

predictive of behavioral performance on a shape identification task, suggesting a consolidation of 

network specialization. Coynel et al. (2010) measured functional integration over a 4-week course 

of motor skill learning and observed a decrease in connectivity between downstream association 

cortices and premotor areas as participants executed well-practiced sequences. Similarly, Sun, 

Miller, Rao and D’Esposito (2007) demonstrated greater interregional connectivity when 

participants were in the earliest phases of learning a novel bimanual motor pattern. Drawing 

parallels to the current findings, it appears that task-based connectivity bolsters early phases of 

learning and narrows as learning progresses. More general cognitive processes related to learning 

also show this pattern. For example, You et al. (2013) noted that functional connectivity in pre-

adolescent children narrowed as participants transitioned from resting state to a sustained attention 

task. 

One potential explanation for this decrease in task-based connectivity, a “plumbing model” 

of learning in the brain, arises from the observation that low levels of activity are sometimes 

accompanied by a high degree of functional connectivity (e.g., Kelly & Garavan, 2005; Büchel et 

al., 1999; McIntosh et al., 1999). Here we examined whether the burden of early computation of 

statistical regularities was shared by a highly integrated network of regions, and whether, after 

further exposure, these interregional connections were no longer required, resulting in lower levels 

of connectivity but greater BOLD activity in specialized downstream regions. From our univariate 

analyses, we do not find strong support for this plumbing hypothesis: run comparisons revealed no 
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significant differences in activity over time. However, the divergence between the present findings 

and previous findings that do support the plumbing hypothesis might be traced to key differences in 

the nature of learning. Specifically, those studies that have dissociated activity and connectivity tend 

to involve learning tasks that resulted in explicit representations of regularities in the environment 

(Büchel et al., 1999; McIntosh et al., 1999).  By contrast, we have shown that while task-based 

connectivity clearly fluctuated, activity levels in a more implicit learning context (i.e., one that did 

not result in explicit representations) did not differ. Above all, our results suggest a complex 

learning process involving mechanisms operating at different timescales: while we did not observe 

stark differences in the magnitude of learning-related BOLD activity across runs, we did find a 

unique connectivity relationship that shifted as exposure to patterned visual stimuli progressed, as 

well as a correlation between changes in connectivity over time and ultimate learning outcomes. In 

the future, advances from the field of network neuroscience (Bassett & Sporns, 2017), which 

involve the use of graph theoretical tools to formalize properties of interregional communication, 

might be leveraged to shed light on the precise mechanisms underlying both the broad-scale and 

item-specific shifts in connectivity observed here.  
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Tables 

Table 1. Detailed break down of activation in all significant cortical and subcortical areas for the 

univariate scene-by-scene (item-specific) learning analysis, collapsed across all three exposure runs. 

Activation clusters spanning anatomical boundaries have been parcellated into individual 

anatomical areas using the Harvard-Oxford atlas, ordered by peak Z-statistic value. These areas are 

coded to indicate which unique functional cluster they belong to (bolded if adhering to cluster 1, 

unmarked if adhering to cluster 2).  

Region Extent (mm3) Voxels x y z Z stat 

LIMBIC             

R Amygdala 1032 129 22 -8 -16 3.35 

R Hippocampus 272 34 22 -8 -20 2.96 

L Posterior cingulate 1512 189 -12 -44 38 2.64 

L Insula 288 36 -36 -16 -2 2.31 

R Posterior cingulate 696 87 4 -52 30 2.26 

R Insula 80 10 36 -16 -2 2.21 

L Amygdala 80 10 -24 -14 -12 2.14 

L Hippocampus 24 3 -24 -14 -14 2.09 

R Parahippocampal gyrus 16 2 16 -32 -6 1.99 

OCCIPITAL             

L Lingual gyrus 1592 199 -22 -56 0 3.02 

L Intracalcarine 1576 197 -8 -70 14 2.86 

L Supracalcarine  288 36 -4 -70 16 2.79 

R Cuneal 800 100 4 -72 28 2.77 

L Lateral occipital complex 3120 390 -46 -66 18 2.67 

L Occipital fusiform 296 37 -32 -74 -8 2.43 

L Cuneal 304 38 0 -72 22 2.37 

L Occipital pole 240 30 -20 -90 38 2.16 

R Lingual gyrus 32 4 10 -46 -2 2.1 

R Supracalcarine 16 2 2 -68 18 2.03 

PARIETAL             

L Precuneus 5976 747 0 -66 32 3.48 

R Precuneus 3432 429 2 -66 32 3.31 

L Angular gyrus 496 62 -56 -52 12 2.35 

R Parietal operculum 192 24 56 -30 22 2.24 

L Supramarginal gyrus 280 35 -58 -46 18 2.15 

R Supramarginal gyrus 32 4 58 -28 26 2.03 
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SUBCORTICAL             

R Thalamus 1872 234 8 -28 0 3.18 

L Pallidum 152 19 -24 -16 -4 2.64 

L Thalamus 656 82 -4 -24 -2 2.47 

L Putamen 304 38 -28 -16 -4 2.46 

R Pallidum 24 3 20 -12 -4 2.24 

R Putamen 32 4 32 -16 -6 2.13 

TEMPORAL             

R Superior temporal gyrus 616 77 62 -34 4 2.9 

R Middle temporal gyrus 320 40 62 -32 0 2.83 

L Middle temporal gyrus 400 50 -56 -52 10 2.42 

R Planum temporale 104 13 52 -32 12 2.26 

L Temporal occipital fusiform 256 32 -44 -58 -24 2.25 

L Inferior temporal gyrus 48 6 -42 -62 -10 2.16 

L Planum polare 64 8 -40 -18 -4 2.05 
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Table 2. Summary of peak grey matter voxels in clusters that show a significant decrease in general 

task-based connectivity with each seed region over time.  We observed no significant increase in 

task-based connectivity with this set of seed regions over time.  

Seed Cluster Peak Extent (mm3) Voxels x y z Cluster P Z stat 

L Lingual gyrus          

 1 R LOC 11728 1466 38 -66 -8 0.0363 3.37 

L LOC          

 1 L Inf. temporal gyrus 25336 3167 -50 -60 -24 0.0004 3.72 

 2 L Putamen 13536 1692 -22 10 2 0.0221 3.36 

 3 R LOC 14880 1860 42 -66 -2 0.0132 3.13 

L Putamen          

 1 L Frontal orbital 31624 3953 -10 6 -20 <0.0001 3.94 

Mid Precuneus          

 1 L Frontal pole 11704 1463 -34 54 -16 0.0457 3.28 

R Amygdala          

 1 L Cerebellum 47656 5957 -40 -68 -26 <0.0001 3.76 

 2 R Thalamus 21112 2639 6 -6 4 0.001 3.38 

R Hippocampus          

 1 R Occipital pole 30424 3803 18 -100 -2 <0.0001 3.94 

 2 L Precuneus 29568 3696 6 -6 4 <0.0001 3.62 

L Heschl’s gyrus          

 1 L Thalamus 79248 9906 -4 0 6 <0.0001 4.53 
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Table 3. Summary of peak grey matter voxels in clusters that show significant differences (either 

increases or decreases) in item-specific connectivity with each seed region over time.   

Seed Cluster Peak Extent (mm3) Voxels x y z Cluster P Z stat 

 

RUN 1 > RUN 3 

L LOC 
         

 
1 L Insula 13624 1703 -38 -4 0 0.0106 3.91 

 
2 R Occipital Fusiform 10936 1367 28 -78 -6 0.0348 3.77 

L Putamen 
         

 
1 L Frontal medial 29664 3708 -8 50 -10 <0.0001 4.55 

R Amygdala 
         

 
1 L Parahipp. gyrus 30488 3811 -22 -34 -18 <0.0001 3.96 

 
2 L Lingual gyrus 23744 2968 -6 -64 -6 0.0006 3.15 

L Primary 

motor          

 
1 L Frontal pole 36544 4568 -34 40 -14 <0.0001 4.16 

L Heschl’s 

gyrus          

 
1 R Temporal fusiform 46680 5835 22 -12 -42 <0.0001 3.62 

 2 L LOC 13736 1717 -38 -74 -8 0.0100 3.40 

 

RUN 3 > RUN 1 

L Lingual 

gyrus 
         

 
1 R Cerebellum 19200 2400 34 -56 -32 0.0008 3.61 

L Putamen          

 1 R Temporal pole 22480 2810 40 10 -38 0.0004 3.91 

 2 R Supramarg. gyrus 18264 2283 50 -32 40 0.0021 3.86 

 3 L Sup. Parietal lobule 13016 1627 -26 -48 40 0.0168 3.38 

 4 L Cerebellum 11696 1462 -36 -74 -38 0.0296 3.17 

Mid 

Precuneus 
         

 1 R LOC 14328 1791 26 -72 28 0.0098 3.64 

R Thalamus          

 1 R Brain stem 25600 3200 2 -40 -44 0.0002 4.17 

 2 L Frontal pole 11616 1452 -18 58 30 0.0313 3.58 

L Primary 

motor          

 
1 L Supramarginal gyrus 12984 1623 -38 -50 34 0.0295 3.39 

L Heschl’s 

gyrus          
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1 R Middle frontal gyrus 21760 2720 28 22 28 0.0004 3.98 
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Figure 1. Left panel: Example of a scene viewed by participants during the exposure phase. Each 

scene contained a variable configuration of 3 base-pairs, where base-pairs were defined as two 

shapes in a fixed spatial relation. Each pair has been color-coded to illustrate the underlying 

structure, but this coding was not visible to the participant during exposure. Right panel: the full 

inventory of base-pairs. 

 

Figure 2. Sample scene scores for a hypothetical participant. Because participants learned base-pairs 

to varying degrees, it was possible to calculate an average learning score for each scene. Recall that 

each scene contained 3 base-pairs. In this example, the learning score for scene 1 was calculated by 

averaging 75%, 100%, and 62.5%, or correct endorsement of base-pairs 1, 4, and 5 at post-test. In 

our model, the time point for this scene would thus be assigned a value of 79.2. The time point 

associated with Scene 2, which contains base-pairs, 1, 3, and 6 would be assigned a score of 54.2.  

Figure 3. Axial views (z = –32 mm to z = 32 mm) for the univariate scene-by-scene (item-specific) 

learning analysis, collapsed across all three exposure runs.  

Figure 4. Top panel: For each functionally defined seed region, axial views of areas exhibiting a 

significant decrease in task- based connectivity over the course of exposure (L LOC = Left lateral 

occipital complex). Slices were selected to illustrate peak voxels. Bottom panel: Strength of task-

based connectivity in individual runs. From the set of regions exhibiting a significant decrease in 

connectivity over time (i.e., each map above), we extracted for each seed region mean PPI effects 

for run 1 (dark grey) and run 3 (light grey).  
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