417 research outputs found

    Structural and molecular basis of the assembly of the TRPP2/PKD1 complex

    Get PDF
    Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations

    Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non BV perturbations

    Full text link
    We develop a theory based on relative entropy to show the uniqueness and L^2 stability (up to a translation) of extremal entropic Rankine-Hugoniot discontinuities for systems of conservation laws (typically 1-shocks, n-shocks, 1-contact discontinuities and n-contact discontinuities of large amplitude) among bounded entropic weak solutions having an additional trace property. The existence of a convex entropy is needed. No BV estimate is needed on the weak solutions considered. The theory holds without smallness condition. The assumptions are quite general. For instance, strict hyperbolicity is not needed globally. For fluid mechanics, the theory handles solutions with vacuum.Comment: 29 page

    Single Nucleotide Polymorphism (SNP) Detection and Genotype Calling from Massively Parallel Sequencing (MPS) Data

    Get PDF
    Massively parallel sequencing (MPS), since its debut in 2005, has transformed the field of genomic studies. These new sequencing technologies have resulted in the successful identification of causal variants for several rare Mendelian disorders. They have also begun to deliver on their promise to explain some of the missing heritability from genome-wide association studies (GWAS) of complex traits. We anticipate a rapidly growing number of MPS-based studies for a diverse range of applications in the near future. One crucial and nearly inevitable step is to detect SNPs and call genotypes at the detected polymorphic sites from the sequencing data. Here, we review statistical methods that have been proposed in the past five years for this purpose. In addition, we discuss emerging issues and future directions related to SNP detection and genotype calling from MPS data

    Wigner Crystals Phases in Bilayer Quantum Hall Systems

    Full text link
    (This is a substantially shortened version of the original abstract:) The Wigner crystal phase diagram of the bilayer systems have been studied using variational methods. Five crystal phases are obtained. As the layer spacing increases, the system will undergo a sequence of phase transitions. A common feature of most bilayer Wigner crystals is that they have mixed (pseudo-spin) ferromagnetic and antiferromagnetic order.Comment: 19 figures. Figures will be provided upon request. Submitted in PRB in Nov 94

    Generic properties of a quasi-one dimensional classical Wigner crystal

    Get PDF
    We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged particles, interacting through a screened Coulomb potential. The ground state energy was calculated and, depending on the density and the screening length, the system crystallizes in a number of chains. As a function of the density (or the confining potential), the ground state configurations and the structural transitions between them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes of the Wigner crystal and the magneto-phonons when an external constant magnetic field BB is applied. At finite temperature the melting of the system was studied via Monte Carlo simulations using the modifiedmodified LindemannLindemann criterioncriterion (MLC). The melting temperature as a function of the density was obtained for different screening parameters. Reentrant melting as a function of the density was found as well as evidence of directional dependent melting. The single chain regime exhibits anomalous melting temperatures according to the MLC and as a check we study the pair correlation function at different densities and different temperatures, formulating a different criterion. Possible connection with recent theoretical and experimental results are discussed and experiments are proposed.Comment: 13 pages text, 21 picture

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio

    ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues.

    Get PDF
    High-throughput RNA-sequencing (RNA-seq) technologies provide an unprecedented opportunity to explore the individual transcriptome. Unmapped reads are a large and often overlooked output of standard RNA-seq analyses. Here, we present Read Origin Protocol (ROP), a tool for discovering the source of all reads originating from complex RNA molecules. We apply ROP to samples across 2630 individuals from 54 diverse human tissues. Our approach can account for 99.9% of 1 trillion reads of various read length. Additionally, we use ROP to investigate the functional mechanisms underlying connections between the immune system, microbiome, and disease. ROP is freely available at https://github.com/smangul1/rop/wiki
    corecore