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Abstract
Massively parallel sequencing (MPS), since its debut in 2005, has transformed the field of
genomic studies. These new sequencing technologies have resulted in the successful identification
of causal variants for several rare Mendelian disorders. They have also begun to deliver on their
promise to explain some of the missing heritability from genome-wide association studies
(GWAS) of complex traits. We anticipate a rapidly growing number of MPS-based studies for a
diverse range of applications in the near future. One crucial and nearly inevitable step is to detect
SNPs and call genotypes at the detected polymorphic sites from the sequencing data. Here, we
review statistical methods that have been proposed in the past five years for this purpose. In
addition, we discuss emerging issues and future directions related to SNP detection and genotype
calling from MPS data.
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1 Introduction
Since 1977, Sanger capillary sequencing [1] had predominated the field of DNA sequence
generation. It was essentially the single viable DNA sequencing technology for almost three
decades. After more than two decades of gradual improvement, the costs of Sanger
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sequencing in the early 2000s were on the order of US $0.5 per kilobase (Kb) [2], taking
~100 minutes [3] to sequence a Kb. This cost and throughput prohibited its application to
large-scale sequencing-based studies. Massively parallel sequencing (MPS; see Table 1 for a
list of abbreviation), also known as next-generation sequencing (NGS), and high-throughput
sequencing (HTS), marked this debut in 2005 [4]. These new sequencing technologies are
able to generate 1 Kb sequence data at the cost of US $0.00005 in ~0.002 minute. The
growth pattern has been more remarkable than that in Moore’s Law [5].

Besides ultra-low costs and ultra-high throughput as compared to Sanger sequencing
technology, these new technologies have two other hallmarks highly pertinent to our topic of
SNP detection and genotype calling: first, relatively short read and second, high per-base
sequencing error rate. Compared to Sanger sequencing, which can generate reads up to ~1
Kb with a per-base error rate <0.001 % [2], MPS technologies generate short reads
(typically 30–400 base pairs [bp] in length) with much higher error rate (0.5–1.0 % error per
raw base is typical) [4, 6]. Such high error rates entail redundant sequencing of each base to
distinguish sequencing errors from true polymorphisms when SNP detection and genotype
calling are performed at the level of a single individual.

Commonly used MPS technologies in the market include the Illumina Solexa sequencing-
by-synthesis [6], Roche 454 pyrosequencing [4], Applied Biosystem SOLiD [7], Helicos
Biosciences [8], Pacific Biosciences [9]. Excellent review papers [2, 3, 10–14] exist
covering various aspects of these new sequencing technologies and it is clear that MPS
technologies have transformed the field of genomic studies [10–12]. In particular, in the
field of gene mapping for human disease or traits, these technologies have led to successful
identification of causal variants for several rare Mendelian disorders [15–21]. They also
begin to explain some of the missing heritability from Genome-wide association studies
(GWAS) [22–24]. For example, whole genome sequencing of ~1000 individuals from an
isolated population has allowed the rediscovery of a coding variant which is known to affect
plasma low-density lipoprotein levels through direct sequencing but was missed using
standard GWAS and imputation [25]. We anticipate MPS to play an increasingly important
role in genomic studies.

One crucial step for the successful application of MPS is variant detection and genotype
calling at detected variant loci. In this review, we will focus on SNP detection and genotype
calling at detected SNPs. The remainder of the review will be organized as follows: we will
first introduce a typical workflow of SNP detection and genotype calling from sequence
data. We will then provide a detailed discussion of methods to detect SNPs and/or perform
genotype calling at detected SNPs. In particular, we categorize the methods into two general
groups: those that detect SNPs or estimate allele frequencies without individual-level
genotype calls, and those that generate individual-level genotype calls. Our focus will be on
the latter group, which we further break down into three types: single-sample (SS), multi-
sample single-site (MS-SS), and multi-sample linkage disequilibrium (LD) based (MS-LD).
We will present representative methods from each category and demonstrate their relative
performance using real data from the 1000 Genomes Project. We will then discuss the
implication of the newly developed SNP detection and genotype calling methods for the
design of sequencing-based association studies, particularly for the study of complex traits.
Finally, we will discuss emerging issues and future directions.

2 A Typical Workflow
Figure 1 depicts a typical pipeline for SNP detection and genotype calling from MPS data.
In this diagram, we start with sequence read data in fastq format files (details below in Sect.
2.1). The fastq files are generated by base-calling methods from a series of images directly
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from sequencing machines. An excellent review paper [26] and several methods papers [27–
30] have been published on base-calling from image data. Our starting data, the fastq format
files, contain the sequence of nucleotides and their corresponding per-base quality scores,
which are typically not very well calibrated (see Sect. 2.3 for more). At this stage, we have
millions or even billions of short reads from unknown genomic positions. We determine
their genomic positions through read alignment (or, interchangeably, called read mapping)
where we map the short read against the entire reference genome or reference transcriptome
(depending on the application) to find the genomic location of each short read. Short reads
are mapped to their most likely genomic positions with varying levels of uncertainty by
alignment algorithms (details in Sect. 2.2). These algorithms provide the most likely mapped
position along with a mapping quality score for each mapped read, which are together stored
in Sequence Alignment/Map (SAM) or BAM (binary SAM) format files [31]. Along with or
after read alignment, per-base quality score recalibration is performed (details in Sect. 2.3).

Given data consisting of mapped reads, per-base quality scores, and read-level mapping
quality scores, we can calculate the probabilities of the data conditional on any of the
possible true genotypes for each diploid individual at each base. These probabilities are
stored in Genotype Likelihood Format (GLF) files.1 Together with a prior on the
distribution for the possible true genotypes, one can obtain genotype calls by applying
Bayes’ rule, which forms the basis of most non-LD-based genotyping methods. LD-based
methods take an additional step to refine genotype calls by borrowing information from
other individuals who carry similar haplotypes, where a haplotype is a specific allele
combination across SNPs. The final calls typically consist of the most likely genotype call
for each individual at each polymorphic locus, along with measures of uncertainty, typically
stored in Variant Call Format (VCF) files (for format details, refer to http://www.
1000genomes.org/node/101).

We will now provide detailed explanations for every aforementioned step in the text to
follow.

2.1 Sequence Data: fastq Format Files
Before introducing methods to analyze sequence data, we view it helpful to show what MPS
data look like. As mentioned above, the raw sequence data are actually a series of images,
from which base-calling methods infer the sequence of nucleotides and their corresponding
per-base quality scores for each short read. The sequence of nucleotides and per-base quality
scores are typically stored in fastq files (for format details, see http://en.wikipedia.org/wiki/
FASTQ_format). Figure 2 shows a few records from a fastq file for a CEU (Utah residents
[CEPH] with Northern and Western European ancestry) individual (ID for this individual is
NA12878) sequenced by the 1000 Genomes Project [32]. The fastq files are available at
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA12878/sequence_read/
ERR009169.filt.fastq.gz.

Information in Fig. 2 is for five short reads, with four lines constituting one read. We will
take the first read as an example. The first line contains read identifier information. The
unique ID for this particular read is ERR009169.17725968. The ID line always starts with
the @ character and may contain additional information. The next line contains the actual
sequence of nucleotides called and is a string made up of four possible characters, A, C, G,
and T, for the four possible nucleotides, Adenine, Cytosine, Guanine, and Thymine,
respectively. Sometimes, a fifth character, N, is also included for “no call.” We can also see

1For format details, refer to ftp://share.sph.umich.edu/1000genomes/pilot1/GLF1.pdf, an excerpt from an early version of http://
samtools.sourceforge.net/SAM1.pdf.
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from this nucleotide line that this particular short read is of length 76 base pairs. The next
line has a single character “+” and sometimes copies the read ID after the “+” character. The
last line contains the per-base quality score in ASCII characters. From these ASCII
characters, we can obtain per-base phred quality scores [33, 34], denoted by Q:

(1)

Given the above definition, a phred score of 10 corresponds to one error every 10 bases (or
sequencing error rate of 0.1); 20 every 100 bases (or sequencing error rate of 0.01); and 30
every 1000 bases (or sequencing error rate of 0.001). In the example fastq, the formula to
calculate phred score from the ASCII characters is:

(2)

Note: The conversion formula may vary with the source of the fastq file. For example, some
newer versions use Q = ASCII − 64.

Here, the first base in the first read has an ASCII character ‘@’ corresponding to a numeric
value of 64. Using the above formula, we get the phred score of 31, which indicates an
estimated sequencing error of 0.00079. Similarly we can calculate the phred scores for the
remaining 75 bases in the read.

2.2 Read Alignment/Mapping
The next crucial step in the analysis of MPS data is read alignment. A large number of
methods have been developed in the past five years for efficiently mapping short reads to a
reference sequence. An incomplete list of commonly used methods includes MAQ [35],
BWA [36, 37], stampy [38], SOAP2 [39], novalign (www.novocraft.com), BFAST [40],
SSAHA [41] most commonly used for DNA sequencing data; and BOWTIE [42], TOPHAT
[43], MapSplice [44], GSNAP [45], and RUM [46] most commonly used for RNA/
transcriptome sequencing data. For a more complete list of methods and software available,
see earlier review articles [47–49] and the following wiki page: http://en.wikipedia.org/wiki/
List_of_sequence_alignment_software.

2.3 Quality Score Recalibration
As previously mentioned, the per-base quality scores estimated by base-calling methods are
typically not well calibrated. For example, when the called nucleotides are compared with
experimental genotypes with comparison restricted at homozygous genotypes (so that any
nucleotide other than the allele underlying the homozygous genotype can be viewed as a
sequencing error), the discordance/error rates typically do not agree with what is implicated
by the per-base quality scores. Since these per-base quality scores play an important role in
SNP detection and genotype calling (see, for example, Sect. 3.2.1), it is essential to perform
quality score recalibration analysis. One typical procedure as implemented in GATK [50]
flows as follows: first we bin the data according to factors that affect calibration precision.
The factors include read cycle (or position along the read), raw per-base quality score,
genomic context (nucleotides before and after the investigated base). Other factors,
particularly those that are specific to a certain MPS technology, have been reported
previously [51–53] and can also be useful for quality score recalibration [54]. After binning,
we calculate the mismatch rate within each bin, at homozygous genotypes when external
genotypes are available (for example, all individuals sequenced by the 1000 Genomes Pilot
Project [32] had been genotyped previously by the International HapMap Projects [55, 56]),
or at non-dbSNP [57] sites under the rationale that almost all individuals are homozygous
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for the reference allele at these sites. Finally, we reset the per-base quality scores
accordingly to Eqs. (1) and (2) in Sect. 2.1, where e in Eq. (1) is set to be the mismatch rate
calculated. The three above steps are iterated until the final per-base quality scores stabilize.

Theoretically, the recalibration procedure should be iterated with read alignment because
per-base quality scores and aligned positions affect each other. For example, if several bases
in a read have much lower recalibrated per-base quality scores, the read may match better to
other genomic positions. Conversely, when reads are mapped to different places in the
genome, the configuration of each bin changes accordingly, which in turn leads to
differently calibrated per-base quality scores. In practice, read alignment is typically not
repeated. This is partly because reads most susceptible to changes in per-base quality scores
tend to be poorly mapped in the first place, thus the information from these reads will be
downweighted in subsequent analysis. The time and resources required for read alignment
also pose a challenge to iteration of recalibration and alignment.

3 Methods for SNP Detection and Genotype Calling
We use “SNP detection” to refer to the inference regarding which base has a variant allele,
that is, an allele other than the reference. We use “genotype calling” to refer to the
estimation of genotypes for each individual at detected SNP loci. In this section, we will first
briefly discuss selected methods that detect SNPs or estimate allele frequencies but do not
estimate individual genotypes (Sect. 3.1). We will then focus on methods that detect SNPs
as well as generate individual-level genotype calls, breaking the methods into three types:
single-sample genotype calling (Sect. 3.2), multi-sample single-site genotype calling (Sect.
3.3.1) and multi-sample LD-based genotype calling (Sect. 3.3.2). Note that we use sample to
refer to a diploid individual throughout the review. Hereafter, we will use sample,
individual, diploid individual interchangeably. This review, ignoring the literature for SNP
detection from Sanger capillary sequencing data, for example, methods underlying
PolyBayes [58], PolyPhred [59, 60], and PolyScan [61], focuses on methods developed for
MPS data.

3.1 SNP Detection or Allele Frequency Estimation Methods
Brockman et al. [51] and VarScan [62] detect SNPs using largely heuristic approaches.
VarScan, for example, takes specific features of different sequencing platforms (Roche 454
and Illumina Solexa considered) and different read alignment methods (compatible with five
methods: BLAT [63], Newbler (Roche), cross_match, BOWTIE [42], and novalign) into
consideration. SNP detection is achieved by applying a series of filters according to
thresholds on total read depth (total number of reads covering the base investigated), strand-
specific depths (number of reads in forward and reverse strand separately), per-base quality
scores, and number of reads carrying the minor allele.

ProbHD proposed by Hoberman and colleagues [64] used a machine learning approach that
considers multiple features to generate a heterozygosity score for each base. Their method,
designed specifically for Roche 454 data, considers a large number of features including
total read depth, strand-specific depths, read cycle (within-read relative position), per-base
quality scores, read alignment quality, and homopolymer length. They used the random
forest method [65] which builds multiple decision trees using these features to classify
whether a base is heterozygous. The proportion of trees that classify a base as heterozygous
is used to construct a heterozygosity score for each diploid individual. Evidence can be
accumulated across individuals to improve detection sensitivity at controlled false call rate.

Atlas-SNP2 [54] detects SNPs in two steps. In the first step, it recalibrates per-base quality
scores for every base carrying the non-reference allele using a logistic regression on a
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training data set. In its real data example, the training data set is an independent pre-existing
data set generated by the same Roche 454 Titanium technology and by the same base-calling
method as in the data set under study. Predictors considered in the logic regression include
raw per-base quality score, neighboring quality standard [66], GC content, read cycle,
genomic context (flanking nucleotides), and features specific to the Roche 454 platform
(e.g., homopolymer length mentioned above). In the second step, Atlas-SNP2 accumulates
information across all reads carrying the non-reference allele using the recalibrated per-base
quality scores, and adopts a Bayesian approach to include read depth and prior knowledge of
the overall sequencing error rates into the modeling framework.

Allele frequency estimation has many important applications for disease mapping [67, 68]
and in the field of population genetics [69, 70]. Although the SNP detection methods
discussed above can either estimate allele frequencies or can easily extend to do so, there are
methods that were developed more specifically to fulfill this important task [71–76]. For
example, Kim et al. used likelihood-based methods to estimate allele frequencies under three
different scenarios: when genotypes are already called from MPS data; when genotypes are
not called but the minor allele is obvious; and when genotypes are not called and the minor
allele is not obvious. The distinction between the second and third scenarios lies mostly
between common and rare variants. For common SNPs, the minor allele frequency (MAF) is
high enough, such that the second most frequently occurring allele can be easily identified
from the three non-reference alleles. However, for rare SNPs, all three non-reference alleles
may appear similar number of times due to the confounding from sequencing errors.

3.2 Single-Sample (SS) Genotype Calling
3.2.1 Genotype Likelihood Calculation—As introduced in Sect. 2, the typical step
after read alignment and quality score recalibration is to calculate likelihood of the observed
sequence data given possible true genotypes at each base and for every diploid individual.
Although, one could determine the alternative allele (assuming SNPs are bi-allelic and thus
there is only one alternative allele) first and calculate likelihood given three possible true
genotypes, namely homozygote for the reference allele; heterozygote, or homozygote for the
alternative allele. Most methods calculate all ten possible true genotypes at every base pair,
as implemented in SAMtools [31]. The calculation involves three pieces of information: the
called nucleotides at each base for each read, per-base quality scores (better if calibrated),
and read-level mapping quality scores.

We will start with a simple scenario where we observe only two alleles at a particular base
from the sequencing data of a particular diploid individual. Denote the two alleles by A and
B where each takes one of the four possible values {A, C, G, T} corresponding to the four
possible nucleotides. The three possible true genotypes therefore are A/A, A/B, and B/B.
Further denote NA the random variable for the number of reads carrying allele A, and nA and
nB the observed number of reads carrying alleles A and B, respectively. If we assume a
uniform per-base sequencing error rate of δ and further assume that the probability of
misreading allele A as allele B is the same as the probability of misreading allele B as allele
A, we have:

(3)

In practice, such simple binomial distribution approximations do not perform well for
several reasons. First, the per-base sequencing error rates are not uniform (we have per-base
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quality scores which are estimates for the base-specific sequencing error rate). Second, they
do not take into account mapping quality information at the read level. A base called with
high confidence still should not be trusted if the read it belongs to is mapped to the current
position with low confidence. Third, sequencing errors tend to be correlated instead of
independent. To solve the second issue, Li and Durbin [35] proposed capping the per-base
quality scores by the mapping score of their residing read. To model the base-specific error
rates and dependency among sequencing errors, Li et al. borrow ideas from Huang and
Madan [77]. In particular, the overall error probability of observing nA reads carrying allele
A and nB reads carrying allele B given the true genotype being B/B, denoted by
ERRORnA, (nA+nB) will change from Eq. (4) [according to Eq. (3) above] to Eq. (5):

(4)

(5)

where δ(i+1) indicates the (i + 1)th lowest base error rate and CnA, (nA+nB) is a function of the
per-base error rate estimates δi ’s but varies little with these δi ’s (details in Li and Durbin
[35] Supplementaries 3.1 and 3.2). θ by default is set at 0.85, which the authors found a
reasonable value for Illumina Solexa data. The particular form in Eq. (5) effectively
downweights information from bases with lower quality scores in a gradually more
aggressive fashion. Suppose nA = 3 and that the sorted corresponding per-base error rates are
0.0001, 0.001, and 0.01, respectively. In particular, the product term in (5) will be (0.0001)θ

0

× (0.001)θ
1
 × (0.01)θ

2
. With the default value θ = 0.85, it becomes (0.0001)1 × (0.001)0.85 ×

(0.01)(0.85)2 = (0.0001) × (0.002818) × (0.03589).

Although the presentation above assumed only two alleles, the formulae directly apply to all
four nucleotides because the formulae only depend on the count and quality scores (again,
including per-base and the mapping quality scores) of “error” bases. Once conditional on the
true genotype, it is obvious which bases are sequencing errors. For example, if the true
genotype is A/C at a locus for a diploid individual, any read carrying G or T allele at that
locus manifests a sequencing error.

3.2.2 Genotype Prior and Calling via Bayes’ Rule—Once the ten genotype
likelihoods are calculated, that is, once we have Pr(Data | G) where G is the true genotype,
inferring genotype becomes trivial. We will only need a prior on the true genotypes Pr(G).
With these two, namely likelihood Pr(Data | G) and prior Pr(G), we can easily call
genotypes via Bayes’ rule. In particular, the posterior probability of the true genotype Pr(G |
Data) can be expressed as follows:

The genotype with the highest posterior probability is then the most likely genotype call and
measures of calling uncertainty can be easily derived. Such a Bayesian framework underlies
common single-sample genotyping methods though many of the different methods use
different priors. For example, MAQ [35] uses priors in which the two possible homozygous
genotypes (with only the two alleles with largest number of read support retained) have
equal prior probability and the heterozygote has a prior probability r. The MAQ authors set r
= 0.001 to discover new SNPs, and r = 0.2 for known SNPs. At known SNP loci, more
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informative priors leveraging the allele frequency information can help genotype calling
when coverage is low (<5X) or medium (<10–15X). Priors can also be made more
informative by distinguishing homozygous genotype for the reference allele from
homozygous genotype for the alternative, and distinguishing transition (A ↔ G, C ↔ T)
mutations from transversion (A/G ↔ C/T) mutations as considered in SOAP-SNP [78].

3.3 Multi-Sample (MS) Genotype Calling
In the previous section, we have laid out the common statistical framework for inferring
genotypes for one diploid individual: calculate genotype likelihood, impose a prior on true
genotypes, and then estimate posterior probabilities via Bayes’ rule. These single-sample
methods rely on redundant sequencing of each base to distinguish sequencing errors from
true polymorphisms [6, 79]. For example, 30X read depth (where each base is covered by an
average of 30 reads) typically results in >99 % genotyping accuracy [6]. These methods
perform well with high depth data but have unacceptable performance when applied to
single individuals with low depth data. For example, Li et al. [78] reported a per-base false
positive rate (FPR) of 0.04 % for a single individual sequenced at 4X, implying a cumulative
per-base FPR of 1 − (1 − 0.04 %)100 = 4 % when applied to 100 independent individuals.
This corresponds to one false positive per 25 bases, and implies that ~90 % of the SNPs
called are false positives assuming one true SNP per 200–300 bases. In addition, at depth
4X, the probability that both alleles at a locus are covered at least once is ~75 % (assuming
the number of times each allele is covered follows a Poisson distribution with mean 2),
implying that >25 % of heterozygotes cannot possibly be inferred properly.

In an attempt to mitigate these issues and to improve the per-depth information obtainable, a
number of multi-sample methods have been proposed in the last two years that generate high
quality genotypes for medium coverage data (10–20X per individual), and even for low
coverage data (down to 2–4X per individual). We classify these methods into two
categories: multi-sample single-site where information is integrated across individuals but at
each site separately; and multi-sample LD-based where information is borrowed both across
individuals and from flanking sites.

3.3.1 Single-Site Inference—There are at least two places where information across
individuals can facilitate inference. First, at the per-base quality score recalibration step,
information from other individuals, particularly when sequenced together, can be used to
form the bins introduced previously in Sect. 2.3. This leads to bins with a larger number of
observations, thus better at avoiding sparse bins and eventually leading to more reliable
recalibration. SNIP-Seq [80], for example, using information across individuals, was able to
partition their sequencing reads into as many as 36 × 2 × 3 bins, according to read cycle
(their read length is 36 bases), strand (forward and reverse), and raw per-base quality (0–9,
10–19, and 20–30). These very fine bins allowed more accurate calibration of the per-base
quality scores, which improves SNPs detection and genotype calling accuracy.

Secondly, information across individuals can be used to form more informative prior on true
genotypes. We mentioned in Sect. 3.2.2 that allele frequency of known SNPs can be used to
form informative prior. The allele frequency can either come from previous data, or be
estimated using multiple samples sequenced under the current study. These allele frequency
estimates together with Hardy–Weinberg equilibrium [81, 82] can be used to specify a prior
on the probabilities of the true genotypes, as in the SeqEM [83] framework. SeqEM adopts
an empirical Bayesian approach. It uses sequence data consisting of multiple samples to
estimate prior parameters including sequencing error rate and allele frequency.
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3.3.2 LD-Based Inference—Integrating information across individuals at the single site
level can improve SNP detection and genotype calling accuracy such that inference on
medium coverage (10–20X) data is possible [80]. To further improve the per-coverage
information gains, multi-sample LD-based methods have been proposed. There are currently
three published methods that fall into this category: MARGARITA [84] + QCALL [85],
GATK [50] + BEAGLE [86], and glfMultiples + thunder [87].

The MARGARITA + QCALL method was developed by Le and Durbin at the Wellcome
Trust Sanger Institute. The method first performs non-LD-based analysis to detect potential
polymorphisms. The non-LD-based analysis integrates information across individuals to
estimate the probability of being polymorphic at each base. Bases that are inferred with an
SNP probability exceeding a prespecified threshold (in this case, 90 %) are carried on to
their LD-based analysis. In the LD-based analysis, genealogy inference is first performed
using existing genotype data for the individuals currently sequenced. The inferred genealogy
is in the form of ancestry recombination graph, which is a coalescent tree describing how
chromosomes or haplotypes from a population-based sample are related to each other,
through recombination, mutation, and coalescence, back to a common ancestor. These
coalescent trees, defining haplotype sharing patterns among individuals sequenced, can be
used to make accurate genotype calls as long as the alleles defining a local haplotype or a
section of a local haplotype can be determined by one of the individuals carrying it. The
accuracy of the genealogy inference thus directly affects the final genotype calling accuracy.
The authors recommend using phased haplotypes for more accurate genealogy inference
with MARGARITA.

The GATK + BEAGLE pipeline also starts with potential polymorphism generation. The
candidate SNP generation is fulfilled using an E-M algorithm [50, 88] where allele
frequency at each base is estimated based on information across all sequenced individuals.
Again, bases with high probability of being polymorphic are carried on to LD-based
analysis, using an imputation method implemented in software BEAGLE. BEAGLE [86, 89]
uses a variable length Markov model to describe local LD structure and is able to generate
genotype calls even at bases with low coverage for a particularly individual, by borrowing
information from other individuals carrying similar haplotypes in local regions but having
reasonable coverage at the investigated bases.

Similarly, glfMultiples + thunder [87] first promote a set of candidate polymorphisms using
Bayesian framework. Starting with genotype likelihood Pr(Data | G) where G is again the
true genotype and taking ten possible values, glfMultiples infers the following posterior
probability of being polymorphic at each base:

where M = 1{A,B} if the base is polymorphic for alleles A and B. The posterior probability is
proportional to the product of the likelihood Pr(Data | M = 1{A,B}) and the prior on M. The
following prior on M is used, according to population genetics principles [90] and
knowledge on mutation type relative to the reference allele, specifically that transitions are
twice as likely as transversions [91, 92]:
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where θ is the pairwise nucleotide difference, estimated to be 0.001 [93, 94], n is the number
of diploid individuals sequenced, c is a normalizing constant chosen such that probabilities
for all the configurations sum to one, and μ is a constant set to be 2/3 if A is the reference
allele and B is the transition mutation; to be 1/6 if A is the reference allele and B is the
transition mutation; and to be 1/1000 otherwise.

To infer the desired posterior probability M = 1{A,B}, glfMultiples first maximizes the
following likelihood as a function of pA, the frequency for allele A:

where Pr(g | M = 1{A, B}) = (pA)2 if g = A/A; (1 − pA)2 if g = B/B; 2pA(1 − pA) if g = A/B; and
0 otherwise.

Again, bases with posterior polymorphic probability exceeding a prespecified threshold are
carried into a hidden Markov model-based method that takes LD into account [95]. The LD-
based calling method in both BEAGLE and thunder adopts essentially the same statistical
framework as used for genotype imputation, which makes inference on missing genotypes
by borrowing information from other individuals carrying similar haplotypes. To read more
about genotype imputation, see review articles [96, 97].

All the three MS-LD methods discussed above share the same two major components:
candidate SNP generation using information across individuals, at each base separately; and
LD-based genotype calling at candidate sites. All were used to generate genotype calls with
similar accuracy for the 1000 Genomes Pilot Project, where individuals were sequenced at
an average coverage of ~4X. Combining results of the three methods into a consensus call
sets improved calling accuracy. For example, average genotype concordance, when
compared with experimental genotypes from the International HapMap Projects, improved
to 98.69 % from 97.56–98.01 % by a single method [32]. This observation suggests that
each individual method can be further improved. For example, the analysis of sequencing
data generated by the 1000 Genomes Main Project has suggested the merit of using
BEAGLE-inferred haplotypes as starting point for the hidden Markov model in thunder
(personal communications with Drs. Gonçalo Abecasis and Hyunmin Kang). Please see the
following wiki page for more information: http://genome.sph.umich.edu/wiki/UMAKE. For
another example, Yu and colleagues at the Baylor College of Medicine developed methods
that also show promising results in the analysis of data generated by the 1000 Genomes
Project. Their methods are implemented in SNPTools, which is available at http://
www.hgsc.bcm.tmc.edu/cascade-tech-software_snp_tools-ti.hgsc.

A more complete list of available software is summarized in Table 2.

3.4 High Level Comparison of the Genotype Calling Methods
We compared the relative performance of the three classes of genotype calling methods on
CEU individuals sequenced by the 1000 Genomes Project. There are two individuals,
NA12891 and NA12892, who were sequenced at high coverage (average depth ~43X), and
70 other individuals sequenced at low depth (average depth ~4X). We used samtools
mpileup, GATK UnifiedGenotyper, and glfMultiples on each of the 72 individuals
separately (therefore SS methods), samtools mpileup, GATK UnifiedGenotyper, and
glfMultiples on all 72 individuals together (therefore MS-SS methods), and glfMultiples +
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thunder on all 72 individuals together (therefore a MS-LD method). For the two high
coverage individuals, we performed calling on randomly selected 10, 20, …, 90 % of the
sequencing reads to compare relative performance of the three methods at different read
depths. For each of the 72 individuals, we counted the number of true heterozygote sites
(defined based on HapMap experimental genotypes) called by each of the seven methods
and compared with the corresponding HapMap experimental genotypes. We applied all
seven methods to chromosome4: 57–62 Mb, a region with moderate level of LD, as
measured by physical distance of half-life r2 [98, 99]. In this region, there are 690 and 772
true heterozygous sites for NA12891, NA12892, and on average 647 (standard deviation:
88, range: 376–841) per person for the 70 low coverage individuals.

Figure 3 shows the results for the two high coverage individuals. All methods achieve very
low genotype discordance rate when the coverage is high. For example, genotype
discordance rate is <0.5 % for all seven methods attempted when 90 % of the sequencing
data are used for genotype calling. MS-LD method manifests its advantages when average
read depth is moderate or low (<20X coverage when <50 % of reads are used). For
example, when 10 % of the reads for NA12892 are used for calling, the discordance rate is
40.7–43.0 %, 35.4–52.5 % and 3.4 % respectively for SS, MS-SS, and MS-LD methods
(Fig. 3 top panel lines and dots in cool colors: black, blue, and green). In general, MS-LD
method generates higher quality calls than SS and MS-SS. Both MS-LD and MS-SS are able
to produce genotype calls at more heterozygous sites than SS. Although MS-SS sometimes
generate calls of lower quality than SS (Fig. 3 top panel), it is largely because of the extra
sites detected that are generally harder to call. For example, when restricting concordance
analysis to sites that are detected by all seven methods, MS-SS always outperform SS (Fig. 3
bottom panel).

Overall, within each category, methods perform very similarly. For the three SS methods,
glfMultiples (GM, yellow) and GATK (orange) tend to call at slightly more heterozygous
sites than samtools (ST, red). GATK (blue) and samtools (ST, black) generate slightly more
accurate calls at heterozygous sites than glfMultiples (GM, green) (Figs. 3 and 4 top panel,
circle points). At the overlapping sites, glfMultiples generates slightly more accurate calls
than samtools and GATK (Figs. 3 and 4 bottom panel, circle points). For the three MS-SS
methods, GATK (orange) tends to call at slightly fewer heterozygous sites than glfMultiples
(GM, yellow) and samtools (ST, red) and calls genotypes with slightly less accurate quality
at both all-heterozygous and overlapping sites compared (Figs. 3 and 4, triangle points). We
only included one MS-LD method since systematic comparisons have been reported
elsewhere [32, 87] as discussed at the end of Sect. 3.3.2.

Figure 4 shows the results for the 70 low coverage individuals. Consistent with observations
from the two high coverage individuals when a small percentage of reads are used for
calling, MS-LD is the only viable method when dealing with low coverage MPS data. The
multi-sample methods (MS-LD and MS-SS) have higher power to detect SNPs. For
example, the average discordance rate for the 70 individuals is 16.90–19.70 %, 21.26–29.44
%, and 2.26 % (Fig. 4 top panel lines and points in cool colors) at an average of 314–343,
604–641, and 641 detected heterozygote sites (Fig. 4 top panel lines and dots in red) using
SS, MS-SS, and MS-LD, respectively. When restricting analysis to the overlapping sites
(average 296 because all sites detected by SS are detected by MS-SS and MS-LD), the
average discordance rate is 17.77–18.24 %, 12.88–18.05 %, and 1.41 %, respectively (Fig. 4
bottom panel).
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4 Implications for the Design of MPS-Based Genetic Association Studies
The availability of statistical methods to generate accurate genotype calls for low to medium
coverage data has important implications for the design of sequencing-based studies. Le and
Durbin [85] evaluated, in terms of SNP detection power, five different designs with the
same total sequencing investment of 1600X. The five designs—50 individuals at 32X, 100
individuals at 16X, 200 individuals at 8X, 266 individuals at 6X, and 400 individuals at 4X
—allowed evaluations of the trade-off between sample size and sequencing depth. While
reducing the per-sample sequencing depth reduces power to detect variants in the sample,
increasing sample size is likely to include more copies of the rare alleles in the sample. For
example, Le and Durbin reported on one hand a loss of 187 SNPs when the depth dropped
from 32X to 16X among the 50 sequenced individuals, while on the other hand a gain of
3628 detected SNPs because of the extra 50 individuals sequenced. In general, their results
showed that sequencing a large number of individuals with low depth (4–6X) is more
powerful for rare SNP discovery than sequencing a small number of individuals at high
depth.

Li et al. [87] also investigated the optimal design problem from an imputation perspective.
In particular, they quantified the trade-off between number of SNPs detected and the quality
of imputation for these detected SNPs when imputed into an external sample without
sequencing data. In particular, they compared two designs: 60 individuals sequenced at 16X
and 400 individuals sequenced at 2X. Both were used for imputation into an independent
sample of 500 individuals with GWAS level (in this case, roughly 300–600 K SNPs
genome-wide) data. They found that the low coverage design is advantageous in terms of
both SNP detection power and imputation quality in the external sample for SNPs with
MAF >0.5 %. For example, the low coverage design resulted in ~14 % more imputable
SNPs and ~7 % increase in average information content, for SNPs with MAF 1–2 %.

The simulations discussed above by Le and Durbin, and Li et al., underpinning the initial
design of the low-coverage 1000 Genomes Project, focus mainly on the design of MPS-
based reference panels that can be utilized by multiple disease/trait-oriented studies. There
are also studies that gauge different design options more explicitly according to statistical
power to detect association with phenotypic trait(s).

For instance, Li et al. [87] evaluated 24 different designs for detecting a single disease
causing variant. The 24 designs investigated included genotyping tagging SNPs only as in a
typical GWAS study in a sample of 3000 individuals, sequencing a subset of individuals of
different sizes (400, 1000, 2000, and 3000 individuals) at different depths (2X, 4X, 6X, 12X,
and 30X), and imputation into individuals not sequenced. They found the low coverage
design (2–4X) a powerful alternative for studying complex traits where a large sample is
typically needed, particularly for the detection of uncommon disease causing variants.

Sampson et al. [100] proposed likelihood ratio test statistics on sequencing data to find
efficient MPS-based study designs for association analysis with human disease, with a
particular focus on discovering rare polymorphisms among the sequenced individuals in the
first place and ultimately on detecting rare disease susceptible variants. Their simulations
have lead to similar conclusions. Specifically, they found that the optimal depth per sample
is 2–8X for detecting rare polymorphisms; and that sequencing as many individuals as
possible at depths as shallow as 1X is preferable for association analysis. Among studies
considering the design of MPS-based studies [101–109], Kim et al. [104], Wang et al. [106],
Ionita-Laza and Laird [109], and Lee et al. [103] also evaluated the impact of sequencing
depth. In particular, Kim et al. explicitly assessed the trade-off between sequencing depth
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and sample size, also finding that sequencing a larger number of individuals at shallower
depth is more powerful than sequencing a smaller number of individuals at higher depth.

5 Remaining Issues and Future Directions
Despite the numerous methods developed recently for SNP detection and genotype calling
from MPS data, there are still many remaining issues that can benefit from more powerful
statistical methods or more efficient computational algorithms.

One issue concerns read alignment. SNP calling methods discussed in this review all assume
that the short reads are correctly aligned. Some only collect count information while the
most sophisticated methods developed so far take mapping quality into account.
Theoretically, the presence of SNPs can affect read alignment. In particular, reads carrying
the non-reference allele (i.e., reads that support the presence of SNPs) tend to be biased
against during read alignment. For example, Degner et al. [110] reported a significant bias
towards higher mapping rate of the reference allele. Indeed, read alignment and SNP
detection can be viewed as rivals as illustrated by the toy example in Fig. 5.

The read in Fig. 5 can be mapped to two places in the genome, pos1 and pos2, each with one
mismatch. Specifically the read can map to pos1 with a mismatch at the last base, or to pos2
with a mismatch at the first base. Further suppose that the phred score at the first base (A) of
the read is 50 and at the last base (T) is 10. Read alignment would favor aligning the read to
pos1 because the probability that the last base T is a sequencing error is 10,000 times that of
the first base A. But for the same reason that the mismatched base has lower quality, SNP
detection at this locus would be favored against. Although being conservative is preferable
to having outrageous false positive rates (FPR), SNP detection power can likely be enhanced
at a controlled FPR using either SNP-tolerant alignment methods [45] or SNP detection
methods that take into account alternative mapping positions.

Further method development is also desired in LD-based genotype calling. First, all the LD-
based methods developed are computationally intensive. For example, genome-wide
application of the three LD-based methods to 60 CEU individuals group sequenced by the
1000 Genomes Pilot Project took one to two weeks. Computational burden, increasing at the
maximum cubically with sample size, can become prohibitive when sample size exceeds
1000. One potential solution is through cloud computing, as adopted by Myrna for RNA-
sequencing differential expression analysis [111]. In addition, existing methods were
developed largely for a sample of unrelated individuals; extending these methods to allow
family data [112, 113] would be valuable and could be advantageous for rare variant
discovery and subsequent association mapping. For example, Chen et al. proposed a method
to consider both LD patterns and the constraints imposed by family structure when assigning
individual genotypes and haplotypes. Their method implemented in TrioCaller demonstrates
that trios provide both higher genotype calling and phasing accuracy across frequency
spectrum, both overall and at hard-to-call heterozygous sites.

Finally, the ultimate goal of genomic studies is almost never detecting SNPs or obtaining
SNP genotypes but rather to detect SNPs or genes that are associated with phenotypic
trait(s) of interest. Therefore, it is desirable to have statistical methods that can incorporate
uncertainty in genotype calls, for subsequent imputation and eventually for association
mapping [114–116]. There is a rich recent literature for testing rare variants detected in
sequencing-based studies. See review articles [117, 118] but there is no consensus on the
most powerful method(s). In addition, population stratification, a potential confounder for
association analysis, warrants further research in the new sequencing context [119]. It is
unclear whether common genetic variants alone suffice for population substructure
inference, or whether rare variants detected through sequencing can improve the precision of
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ancestry inference, which would eventually lead to enhanced power in association analysis.
All the aforementioned tasks are directly pertinent to association mapping and can be greatly
affected by SNP detection and genotype calling. Although some genotype-free methods
[120] have been proposed for various association and population genetics analyses, the vast
majority of analyses rely heavily on accurate SNP detection and genotype calling methods.
We anticipate more research, both in statistical methodology and computational algorithms,
in this important arena.
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Fig. 1.
A typical workflow for SNP detection and genotype calling. We show a typical workflow
for SNP detection and genotype calling from massively parallel sequencing data, starting
from unmapped reads (in fastq format)
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Fig. 2.
Example fastq file. We show records from a standard format for unmapped reads: fastq
format file
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Fig. 3.
Comparison of methods on high coverage data from the 1000 genomes pilot project. Three
classes of methods, namely SS, MS-SS, and MS-LD, are compared in terms of both number
of heterozygotes detected and genotype concordance with experimental genotypes (from the
International HapMap project) at detected sites, for NA12891 and NA12892 who were
sequenced to a high coverage (average depth ~40X) in the 1000 Genomes Pilot Project. The
right Y -axis shows the number of sites where the method generates a genotype call and
where the experimental genotype is heterozygous. Warm color (red, yellow and orange)
dotted lines and points use this axis. The left Y -axis shows the genotype discordance rate at
the compared heterozygotes. Cool color (blue, green and black) solid lines and points use
this axis. For both SS and MS-SS, three methods are used: GATK (GATK
UnifiedGenotyper), GM (glfMultiples), and ST (samtools). For clarity, the right-Y axis
legend is only shown in NA12891 (all sites) and the left-Y axis legend only shown in
NA12891 (overlapping sites). (Color figure online)
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Fig. 4.
Comparison of methods on low coverage data from the 1000 genomes pilot project. Three
classes of methods, namely SS, MS-SS, and MS-LD, are compared in terms of both number
of heterozygotes detected and genotype concordance with experimental genotypes (from the
International HapMap project) at detected sites, for 70 individuals sequenced at low
coverage (average depth ~4X) in the 1000 Genomes Pilot Project. The right Y -axis shows
the number of sites where the method generates a genotype call and where the experimental
genotype is heterozygous. Warm color (red, yellow and orange) dotted lines and points use
this axis. The left Y -axis shows the genotype discordance rate at the compared
heterozygotes. Cool color (blue, green and black) solid lines and points use this axis. For
both SS and MS-SS, three methods are used: GATK (GATK UnifiedGenotyper), GM
(glfMultiples), and ST (samtools). For clarity, the right-Y axis legend is only shown in the
top panel (low-coverage all sites) and the left-Y axis legend only shown in the bottom panel
(low-coverage overlapping sites). (Color figure online)
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Fig. 5.
Alignment and SNP detection are rivals. We illustrate using a toy example that alignment
and SNP detection are two competing goals in the sense that standard alignment methods
favor mapping reads to genomic positions that would lead to under-calling of SNPs
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Table 1

Abbreviations

Abbreviation Description (section)

BAM Binary SAM, Sequence Alignment/Map format (Sect. 2.1)

GLF Genotype Likelihood Format (Sects. 2, 3.2.1)

GWAS Genome-wide Association Studies (abstract, Sect. 1)

HTS High Throughput Sequencing (Sect. 1)

Kb Kilobase (Sect. 1)

LD Linkage Disequilibrium (Sects. 1, 3.3.2)

MPS Massively Parallel Sequencing

MS-LD* Multi-Sample Linkage Disequilibrium genotype calling method (Sect. 3.3.2)

MS-SS* Multi-Sample Single-Site genotype calling method (Sect. 3.3.1)

NGS Next Generation Sequencing (Sect. 1)

SAM Sequence Alignment/Map format (Sect. 2.1)

SNP Single Nucleotide Polymorphism

SS* Single-Sample genotype calling method (Sect. 3.2)

VCF Variant Call Format (Sect. 2)
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