23 research outputs found

    Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural network

    Get PDF
    The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider experiments. This paper presents a new calibration method to simultaneously calibrate these quantities for large-radius jets measured with the ATLAS detector using a deep neural network (DNN). To address the specificities of the calibration problem, special loss functions and training procedures are employed, and a complex network architecture, which includes feature annotation and residual connection layers, is used. The DNN-based calibration is compared to the standard numerical approach in an extensive series of tests. The DNN approach is found to perform significantly better in almost all of the tests and over most of the relevant kinematic phase space. In particular, it consistently improves the energy and mass resolutions, with a 30% better energy resolution obtained for transverse momenta pT > 500 GeV

    An efficient equivalent circuit model for the EMC analysis of power/ground noise

    No full text
    10.1109/SPI.2008.455835012th IEEE Workshop on Signal Propagation on Interconnects, SPI

    An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils

    No full text
    The neutrophil NADPH oxidase produces both intracellular and extracellular reactive oxygen species (ROS). Although oxidase activity is essential for microbial killing, and ROS can act as signaling molecules in the inflammatory process, excessive extracellular ROS directly contributes to inflammatory tissue damage, as well as to cancer progression and immune dysregulation in the tumor microenvironment. How specific signaling pathways contribute to ROS localization is unclear. Here we used a systems pharmacology approach to identify the specific Class I PI3-K isoform p110β, and PLD1, but not PLD2, as critical regulators of extracellular, but not intracellular ROS production in primary neutrophils. Combined crystallographic and molecular dynamics analysis of the PX domain of the oxidase component p47phox, which binds the lipid products of PI 3-K and PLD, was used to clarify the membrane-binding mechanism and guide the design of mutant mice whose p47phox is unable to bind 3-phosphorylated inositol phospholipids. Neutrophils from these K43A mutant animals were specifically deficient in extracellular, but not intracellular, ROS production, and showed increased dependency on signaling through the remaining PLD1 arm. These findings identify the PX domain of p47phox as a critical integrator of PLD1 and p110β signaling for extracellular ROS production, and as a potential therapeutic target for modulating tissue damage and extracellular signaling during inflammation
    corecore