48 research outputs found

    Long-Range Coulomb Interaction and the Crossover between Quantum and Shot Noise in Diffusive Conductors

    Full text link
    Frequency-dependent nonequilibrium noise in quantum-coherent diffusive conductors is calculated with account taken of long-range Coulomb interaction. For long and narrow contacts with strong external screening the crossover between quantum and shot noise takes place at frequencies much smaller than the voltage drop across the contact. We also show that under certain frequency limitations, the semiclassical and quantum-coherent approaches to shot noise are mathematically equivalent.Comment: 13 pages, RevTex, 7 ps figures, more details of derivation give

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    Nonequilibrium electron cooling by NIS tunnel junctions

    Full text link
    We discuss the theoretical framework to describe quasiparticle electric and heat currents in NIS tunnel junctions in the dirty limit. The approach is based on quasiclassical Keldysh-Usadel equations. We apply this theory to diffusive NIS'S tunnel junctions. Here N and S are respectively normal metal and superconductor reservoirs, I is an insulator layer and S' is a nonequilibrium superconducting lead. We calculate the quasiparticle electric and heat currents in such structures and consider the effect of inelastic relaxation in the S' lead. We find that in the absence of strong relaxation the electric current and the cooling power for voltages eV<ΔeV < \Delta are suppressed. The value of this suppression scales with the diffusive transparency parameter. We ascribe this suppression to the effect of backtunneling of nonequilibrium quasiparticles into the normal metal.Comment: 12 pages, 6 figures, proceedings, to be published in JLT

    Resonant scattering on impurities in the Quantum Hall Effect

    Full text link
    We develop a new approach to carrier transport between the edge states via resonant scattering on impurities, which is applicable both for short and long range impurities. A detailed analysis of resonant scattering on a single impurity is performed. The results are used for study of the inter-edge transport by multiple resonant hopping via different impurities' sites. It is shown that the total conductance can be found from an effective Schroedinger equation with constant diagonal matrix elements in the Hamiltonian, where the complex non-diagonal matrix elements are the amplitudes of a carrier hopping between different impurities. It is explicitly demonstrated how the complex phase leads to Aharonov-Bohm oscillations in the total conductance. Neglecting the contribution of self-crossing resonant-percolation trajectories, one finds that the inter-edge carrier transport is similar to propagation in one-dimensional system with off-diagonal disorder. We demonstrated that each Landau band has an extended state EˉN\bar E_N, while all other states are localized. The localization length behaves as LN−1(E)∌(E−EˉN)2L_N^{-1}(E)\sim (E-\bar E_N)^2.Comment: RevTex 41 pages; 3 Postscript figure on request; Final version accepted for publication in Phys. Rev. B. A new section added contained a comparison with other method

    Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

    Full text link
    We study non-equilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative and Josephson currents co-existing within the same proximity region. In junctions with transparent interfaces, the suppression of the Josephson current appears at rather large voltage, eV∌ΔeV\sim \Delta, and the current vanishes at eV≄ΔeV\geq\Delta. Josephson current inversion becomes possible in junctions with resistive interfaces, where the inversion occurs within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent injection current, the critical current measured in a current biased junction does not coincide with the maximum Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence of the conductance shows two pronounced peaks, at the bulk gap energy, and at the proximity gap energy; the phase oscillation of the conductance exhibits qualitatively different form at small voltage eV<ΔeV<\Delta, and at large voltage eV>ΔeV>\Delta.Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.

    Current-induced highly dissipative domains in high Tc thin films

    Full text link
    We have investigated the resistive response of high Tc thin films submitted to a high density of current. For this purpose, current pulses were applied into bridges made of Nd(1.15)Ba(1.85)Cu3O7 and Bi2Sr2CaCu2O8. By recording the time dependent voltage, we observe that at a certain critical current j*, a highly dissipative domain develops somewhere along the bridge. The successive formation of these domains produces stepped I-V characteristics. We present evidences that these domains are not regions with a temperature above Tc, as for hot spots. In fact this phenomenon appears to be analog to the nucleation of phase-slip centers observed in conventional superconductors near Tc, but here in contrast they appear in a wide temperature range. Under some conditions, these domains will propagate and destroy the superconductivity within the whole sample. We have measured the temperature dependence of j* and found a similar behavior in the two investigated compounds. This temperature dependence is just the one expected for the depairing current, but the amplitude is about 100 times smaller.Comment: 9 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Quasiclassical description of transport through superconducting contacts

    Full text link
    We present a theoretical study of transport properties through superconducting contacts based on a new formulation of boundary conditions that mimics interfaces for the quasiclassical theory of superconductivity. These boundary conditions are based on a description of an interface in terms of a simple Hamiltonian. We show how this Hamiltonian description is incorporated into quasiclassical theory via a T-matrix equation by integrating out irrelevant energy scales right at the onset. The resulting boundary conditions reproduce results obtained by conventional quasiclassical boundary conditions, or by boundary conditions based on the scattering approach. This formalism is well suited for the analysis of magnetically active interfaces as well as for calculating time-dependent properties such as the current-voltage characteristics or as current fluctuations in junctions with arbitrary transmission and bias voltage. This approach is illustrated with the calculation of Josephson currents through a variety of superconducting junctions ranging from conventional to d-wave superconductors, and to the analysis of supercurrent through a ferromagnetic nanoparticle. The calculation of the current-voltage characteristics and of noise is applied to the case of a contact between two d-wave superconductors. In particular, we discuss the use of shot noise for the measurement of charge transferred in a multiple Andreev reflection in d-wave superconductors

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Theory of charge transport in diffusive normal metal / conventional superconductor point contacts

    Get PDF
    Tunneling conductance in diffusive normal metal / insulator / s-wave superconductor (DN/I/S) junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by Yu. Nazarov [Superlattices and Microstructures 25 1221 (1999)] is applied, where the ballistic theory by Blonder Tinkham and Klapwijk (BTK) and the diffusive theory by Volkov Zaitsev and Klapwijk based on the boundary condition of Kupriyanov and Lukichev (KL) are naturally reproduced. It is shown that the proximity effect can enhance (reduce) the tunneling conductance for junctions with a low (high) transparency. A wide variety of dependencies of tunneling conductance on voltage bias is demonstrated including a UU-shaped gap like structure, a zero bias conductance peak (ZBCP) and a zero bias conductance dip (ZBCD)
    corecore