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Theory of charge transport in diffusive normal metal/conventional superconductor point contacts

Y. Tanakal A. A. Golubov? and S. Kashiwaya
IDepartment of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
2Faculty of Science and Technology, University of Twente, 7500 AE, Enschede, The Netherlands
3National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
(Received 1 December 2002; revised manuscript received 23 April 2003; published 8 August 2003

Tunneling conductance in diffusive norm@N) metal/insulatog-wave superconductor junctions is calcu-
lated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the
transparency of the insulating barrier. The generalized boundary condition introduced by N&agpeviat-
tices and Microstructure®5, 1221(1999] is applied, where the ballistic theory by Blonder, Tinkham, and
Klapwijk and the diffusive theory by Volkov, Zaitsev, and Klapwijk based on the boundary condition of
Kupriyanov and Lukichev are naturally reproduced. It is shown that the proximity effect can erlhechoeg
the tunneling conductance for junctions with a Idhigh) transparency. A wide variety of dependencies of
tunneling conductance on voltage bias is demonstrated including a U-shaped gap like structure, a zero-bias
conductance peak, and a zero-bias conductance dip. The temperature dependence of tunneling conductance is
also calculated, and the conditions for the reentrance effect are studied.
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[. INTRODUCTION experiments is understood as a resonance phenomenon re-
lated to reflectionless tunnelirf.The scattering matrix ap-

The electron coherence in mesoscopic superconductingroach was later generalized to finite voltage and
systems is one of the important topics of solid-state physicsemperaturé?
The low-energy transport in these systems is essentially in- On the other hand, a quasiclassical Green’s function cal-
fluenced by the Andreev reflectidra unique process specific culation based on nonequilibrium  superconductivity
for normal metal/superconductor interfaces. The phase cdheorie? is much more powerful and convenient for the
herence between incoming electrons and Andreev reflecteattual calculation$® In this approach, the impurity scatter-
holes persists in the diffusive normal metal at a mesoscopimg is included in the self-consistent Born approximation and
length scale and results in strong interference effects on thine weak localization effects are neglected. In the theory of
probability of Andreev reflectiof. These effects become tunneling conductance developed by Volkov, Zaitsev, and
prominent at sufficiently low temperatures where the thermaKlapwijk (VZK) by solving the Usadel equatiof$the ori-
broadening is negligible. One of the remarkable experimengin of the ZBCP observed in several experiments was clari-
tal manifestations is the zero-bias conductance peafied to be due to the enhancement of the pair amplitude in the
(ZBCP).313A calculation of tunneling conductance in a nor- diffusive normal metal by the proximity effeét.VZK ap-
mal metal(N)/superconductotS) junction is an interesting plied the Kupriyanov and LukichefKL ) boundary condition
theoretical problem since quantum interference effects due tior the Keldysh-Nambu Green’s functiéh The KL bound-
Andreev reflection are expected. ary condition is valid for the atomically sharp interface bar-

For a clean NS contact in the presence of the interfaceier dividing two diffusive metals. As shown by Lambest
potential barrier, the conductance was calculated by Blondeal.,?® this condition is exact in two limits of either high or
Tinkham, and Klapwijk* (BTK) in terms of the correspond- low barrier transparency, with small corrections in the inter-
ing transmission coefficients on the basis of the solution ofmediate transparency range. By applying the VZK theory,
the Bogoliubov—de Gennes equations. From the general seeveral authors studied the charge transport in various
of boundary conditions connecting the quasiclassical Greenfinctiong’~34 by solving the Usadel equatiorisee the re-
functions on both sides of the interface for arbitrary transview by Belziget al.%)
mission probabilities, Zaitsé¥ derived the expression for The generalization of the KL boundary conditions for an
the conductance similar to that by BTK. The BTK metifbd arbitrary connector between diffusive metals was provided
is confined to ballistic systems. The generalization of thishy Nazarov within the so-called “generalized circuit
method to systems with impurities has been performed byheory.”® In this theory, the mesoscopic system is presented
several authorgsee the review in Ref. 16In a number of as a network of nodes and connectors. A connector is char-
papers, the transmission coefficients were directly calculatedcterized by a set of transmission coefficients and can
by numerical method¥’'® However, it is difficult to apply present anything from a ballistic point contact to a tunnel
such methods to most of relevant experimental situationgunction. A conservation law of matrix current holds in each
Another approach, the so-called random matrix theory, wasode. The method to derive the relation between matrix cur-
employed by Beenakkest al, where the total transmission rent and Green’s functions puts the results of Ref. 15 to the
coefficients are expressed in terms of those through the noframework of Landauer-Btiker scattering formalism. The
mal part of the system and the normal/superconductor intelboundary condition for Keldysh-Nambu Green’s function
face separatefff°Within this theory, the ZBCP observed in was derived in Ref. 36 for an arbitrary connector including
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various situations from ballistic point contact to diffusive [l. FORMULATION
contact. Actually, this boundary condition is very general

. . . U In this section we introduce the model and the formalism.
since the BTK theory is reproduced in the ballistic limit

o A S We consider a junction consisting of normal and supercon-
while in the diffusive limit with a low transmissivity of the y,ing reservoirs connected by a quasi-one-dimensional dif-
interface, the KL boundary condition is reprgduced. fusive conductofDN) with a lengthL much larger than the
Although a number of papers were published on charggnean free path. The interface between the DN conductor and
transport in mesoscopic NS junctions, as far as we knoWne s electrode has a resistariRg, while the DN/N inter-
almost all of them are either based on the KL boundary conface has zero resistance. The positions of the DN/N interface
ditions or on the BTK model. However, in the actual junc- of the DN/S interface are denotedys 0 andx=L, respec-
tions, transparency of the junction is not necessarily smalfively. According to the circuit theory, the interface between
and impurity scattering in the DN is important. Therefore, anDN and S is subdivided into two isotropization zones in DN
interesting and important theoretical problem is the calculaand S, two ballistic zones, and a scattering zone. The sizes of
tion of the tunneling conductance in normal metal/the ballistic and scattering zones in the current flow direction
conventional superconductor junctions using the boundargre much shorter than the coherence length. Although the
condition from Ref. 36 since both the ballistBTK theory) generalized boundary condition of Ref. 36 is valid for arbi-
and diffusive (VZK theory) cases can be covered simulta- trary interfaces, here scattering zone is modeled as an infi-
neously. In the present paper, we study the tunneling conduditely narrow insulating barrier described by the delta func-
tance in diffusive normal metal/insulator/conventional superion U(x)=Hd(x—L). The resulting transparency of the
conductor(DN/I/S) junctions for various parameters such asjunctionsTy, is given byTp,=4 coS¢/(4 cos¢+2%), where
the height of the insulating barrier at the interface, resistanc€=2H/(%v¢) is a dimensionless constart,is the injection
Ry in DN, and the Thouless enerd, in DN. We concen- angle measured from the interface normal to the junction and

trate on the normalized tunneling conductance of the junctr IS Fermi velocity. Variation of the barrier shape will not
tions o1(eV) as a function of the bias voltagé The con- change our results in the considered case of isotropic super-

ductanceo{(eV) is given by or(eV)=og(eV)/aon(eV), conductivity in the S glectrpde. Lo
where o T((e\>)/) i thge tunneﬁnng:o\r%uctgﬁc?in ’t\lrSe \é)uper- We apply the quasiclassical Keldysh formalism in the fol-
conductisr(:\gl])(norma) state at a bias voltagé lowing calculation of the tunneling conductance. The 4
In the present paper, the following points are clarified: Green’s functions in DN and S are denoted ®y(x) and
(1) When the transparency of the junction is sufficiently G,(x), which are expressed in matrix form as
low, or(eV) for |eV|<A, is enhanced with the increase of

Ry due to the enhancement of the proximity effect. The 5 (ﬁgl(x) K1(x)

ZBCP becomes prominent fdf;,<A, and Ry/R,<1. In Gi(x)= . , (eN]

such a case, with a further increase Rf/R,,, the ZBCP 0 A0

changes into a zero bias conductance(@BCD). In the low

transparent limit, the line shapes @f(eV) are qualitatively ﬁz(x) RZ(X)

the same as those obtained by the VZK thédr}. éz(x)z( A 2)
(2) When the transparency of the junction is almost unity, Ax(X)

or(eV) always exhibits a ZBCD except for the special case R R

of Ry4=0, i.e., the BTK limit. where the Keldysh componekt; A(x) is given byK; ()
(3) The measure of the proximity effed, is mainly de- = |331(g)(X)f1(z)(X)—?1(2)(X)A1(2)(X): with retarded compo-

termined byR, /R, andEy,,, whereRy, is the resistance from

the insulating barrier. The proximity effect enhandes-

duce$ the magnitude ofor(eV) for junctions with low

(high) transparency. . N .
(4) Even for junctions between conventiormiave su- Ra(x)=(g73+f7y),

perconductors, we can expect a wide variety of line shapes of

the tunneling conductance, a ZBCP, ZBCD, U-shaped strucwith g= €/\/e?— A3 and f=A,/+/A— €2, wheree denotes

ture, and a rounded bottom structure. the quasiparticle energy measured from the Fermi energy,
(5) We have clarified the parameter space where a ZBCR,(x)=—R3(x), and f,(x)=tanlje/(2ksT)] in thermal

should be expected. Typically, small Thouless endggyis  equilibrium with temperaturd. We put the electrical poten-

required for a ZBCP. If the magnitude Bf, is increasing up  tial zero in the S electrode. In this case the spatial depen-

to_Aq, _aZBCP is only expected for junctions with low trans- yence ofG,(x) in DN is determined by the static Usadel

missivity, Ry/R,<<1. equatior?®
The organization of this paper is as follows. In Sec. I, we

will provide the detailed derivation of the expression for the

nentR; (x), advanced componem; ,(x), using distribu-
tion functionfl(z)(x). In the aboveR,(x) is expressed by

normalized tunneling conductance. In Sec. lll, the results of i e (X)‘?Gl(x) +Hi[H,G,(x)]=0 3)
calculations ofor(eV) and 6 are presented for various types x|t IX ot ’

of junctions. In Sec. IV, the summary of the obtained results .

is given. with the diffusion constanb in DN, whereH is given by
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A, O In the abovef(x) is the relevant distribution function which
= ], determines the conductance of the junction we are now con-
0 Hy centrating on. From the retarded or advanced component of

oA the Usadel equation, the spatial dependencé&(»Jf is deter-
with Ho= €. mined by the following equation

The boundary condition foél(x) at the DN/S interface

is given by Nazarov’s generalized boundary condition, 92
D— 6(x)+2iesin 6(x)]=0, (7
L ( ) aél> ) X
R_d GlW L =R, (B), 4 while for the Keldysh component we obtain
a | df(x)
2T [G1(L_),Gu(L.)] D —ox costt f;,(x) | =0. (8)

4+ Tr([Gy(L-),Ga(L1)]4—2) At x=0, since DN is attached to the normal electrode,

The average over the various angles of injected particles #(0)=0, andf(0)=f, is satisfied with
the interface is defined as 1

o o ft0=§{tanr[(e+ eV)/(2kgT)]—tanH (e—eV)/(2kgT)]}.
<B(¢)>=f d¢COS¢B(¢)/ f doT(¢)cosd, » ,
—ml2 —ml2 Next we focus on the boundary condition at the DN/S inter-

with B(¢)=B andT(¢)=Tg. The resistance of the inter- face. Taking the retarded part of B, we obtain

face (Rp,) is given by L 96(x) (F)
JE— =—) 9
2 Rd IX x=L Rb ( )
Rb: Ro 2 .
f B /2d¢>T(¢)cos¢ 2(f cosf —gsing )T,

. . . ) . F= (2—=Ty)+Tlgcosd +fsing ]’
Here R, is the Sharvin resistance, which in three-
dimensional case is given B, *=e2?2S,/(47%h), where ~ With 6. =0(L).
ke is the Fermi wave vector ang, is the constriction area. . ©ON the other hand, from the Keldysh part of E4), we

Note that the ares, is in general not equal to the cros- OPtain
section are&y of the normal conductor; therefo®, /S, is L [ of Lo NFo(L
. ar (Ipo) fe(L-)
an independent parameter of our theory. AT costt 6;,(X) = — R (10)
For T,,—0 in Eqg.(4), the quantityB can be expressed as al X x=L_ b
Th « with
B= 7[61162], ,
TmAl+2Tm(2_Tm)A2
and we can reprodvuce the KL boundary condition. On the Ib0:2|(2—Tm)+Tm[gcos¢9,_+fsin0,_]|2’
other hand, ax=0, G4(0) coincides with that in the normal
state. ) A1=(1+]|cosé|?+|sind. | (|g|?+]|f|?>+1)
The electric current is expressed usi@g(x) as T 4Im[fg* Jim[ cosf, sin ¥ ], (11)
4 K
—L [ . dG (X . .
|e,=—f deTr| 73| G1(X) 1) , (5) A,=Re{g(cosf_+cosby )+ f(sing +sin6y)}, (12)
4eRyJo ox

. . where 6;,,(x) denotes the imaginary part @f(x). For T,
where (le(x)[&le(x)/ax])K denotes the Keldysh compo- <1, I, is reduced to

nent of (G,1(x)[ #G1(x)/dx]). In the actual calculation it is

convenient to use the standafgparametrization when func- L Re g(cosoy +coso; ) +f(sind, +singf)]
tion R;(x) is expressed as b0 2 m-(13)
R1(X)= 73 €OSO(X) + 72 SIN6(x). (6) which is the expression used in the VZK theory. After a

The parametep(x) is a measure of the proximity effect in Simple manipulation, we can obtafp(L -)
DN.

Functions A;(x) and K(x) are expressed ag;(x) f (L )= Rofto
=—R¥(x) and Rl(xA):f?l(x)fl(x)j?l(x)Al(x), with the Ro-t Ra(lbo) [+ dx
distribution functionf {(x) given by f(x)=f(x)+ 73f(X). L 0 cosifé;,(x)
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]
eV/A,

FIG. 1. Normalized tunneling conductance f@=10 and
ETh/Aozl. (a) Rd/RbZO, (b) Rd/Rb:O.l, (C) Rd/Rb::L, (d)
Rd/RbZZ, and(e) Rd/Rb=10

Since the electric current, can be expressed vig in the
following form,

L (= of,
= " R o ( )

we obtain the following final result for the current:

cosH[Im(6,)]de,
X=L_

_1 * ftO
ly==| de (14)
€Jo Rb Rd dx

) b0>

Then the total resistand® at zero temperature is given by

Rb Rdj dx
<|b0> 0 cosibm(X)

0 cosf?eim(x)

R= , (15

PHYSICAL REVIEW B 68, 054513 (2003

ZV Z=10 Eq=0.014, N

or(eV)

FIG. 2. Normalized tunneling conductance f@=10 and
ETh/AOZO.Ol.(a) Rd/RbZO, (b) Rd/RbZO.l, (C) Rd/Rb::Li (d)
Rd/szz, (e) Rd/Rb=10

more proportional toT,,(L/1), whereT,, is the averaged
transmissivity of the barrier arlds the mean free path in the
diffusive region, respectively. Based on this fact, we can
chooseRy /R, andZ as independent parameters.

In the following section, we will discuss the normalized
tunneling conductancesrt(eV)=og(eV)/on(eV), where
on(eV) is the tunneling conductance in the normal state
given byoy(eV)=on=1/(Ry+Ry), respectively.

IIl. RESULTS
A. Tunneling conductance vs voltage: Zero-bias anomalies

In this section, we focus on the line shape of the tunneling
conductance. Let us first choose the relatively strong barrier
Z=10(Figs. 1 and 2for variousRy/R, . For Et,=A,, the
magnitude ofo(eV) for |eV|<A, increases with the in-
crease ofRy /Ry . First, the line shape of the tunneling con-

and the tunneling conductance in the superconducting stattuctance remains to be U shaped and only the height of the

og(eV) is given byog(eV)=1/R.

It should be mentioned that fd&r,=
due to the absence of the proximity effect. THggis given
as follows:

(1+|g?+[f|) T3+ 2T(2— T Re(Q)
|(2=T )+ Trgl?

b0~

Tl 14|24+ (Ty—1)|T]*]
|1-(1-T)I??

with T'=(e— J?— A2V (e+ = AZ)Y? and the result-

ing o is given by

: (16)

w2 | b0

og(eV)= —f — CoS¢d g,

and reproduces that by BTK theory.

0, 6, becomes zero

bottom value is enhance@urve b). Then, with a further
increase oRy /Ry, a rounded bottom structufteurvesc and

d) appears, and finally it changes into a nearly flat line shape
(curve e). For E;4=0.01A, (Fig. 2, the magnitude of

Z=0 'EqnzA,

a

r
eV/A,

It should be remarked that in the present circuit theory,

R4/Rp can be varied independently df,, i.e., indepen-

FIG. 3. Normalized tunneling conductance f@=0 and

dently of Z, since one can change the magnitude of the cong;,/A,=1. (8 Ry/R,=0, (b) Ry/R,=0.1, (¢) Ry/R,=1, (d)

striction areaS; independently. In other word&,/R;, is no

Rd/szz, and(e) Rd/Rb: 10.
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Z=0 En=0014,

FIG. 4. Normalized tunneling conductance f@&=0 and
ETh/AOZO.Ol. (a) Rd/RbZO, (b) Rd/szo.l, (C) Rd/Rb: l, (d)
Rd/RbZZ, and(e) Rd/Rb:].O

FIG. 6. Normalized tunneling conductance fa@=1 and
ETh/A0=O.Ol.(a) Rd/RbZO, (b) Rd/szo.l, (C) Rd/szl, (d)
Rd/szz, and(e) Rd/Rb:10

o1(eV) has a ZBCP once the magnitudeR{f/R,, deviates dence becomes very weak as shown by clevé&or E
slightly from 0. The order of magnitude of the ZBCP width _ 514 ™ the ZBCIg/ appears for a smyall rﬁagnitu?j?a of
is given by Er,. When the magnitude cR4/R,, exceeds Ry/R;, (see curved). With increasing magnitude &4/R,,,
unity, the ZBCP splits into two(curve d)_’ gnd finally the ZBCP changes into a ZBC@urvesc—e). As compared
or(eV) acquires a .ZBC[.ICUNG €). In the limit of an ex- to theZ=10 casdsee Fig. 2, the ZBCP is much more easier
tremely strong barrier wittZz— o, the results of the VZK to change into a ZBCD by increasing the magnitude of
theory are reproduced. Ry/R,

B Onhther otherr] hand,f 'T} the fu"3|/. transpzrent casebvﬂth It is interesting to study how various parameters influence
_(.)’ td(.eﬁ In€ shape o iAe tunneling ccr:n uctan(_:ed ecc:cmeﬁ]e proximity effect. The measure of the proximity effect at
quite different. ForEry=24, (F'g' 3, the magnitu € Ol the SIN interface, is plotted forz=0 and 10 with corre-
or(eV) decreases with the increase of the magnitude o ponding parameters in Figs. 1—4. FRy/R,=0, 6, =0 is
Ry4/Ry. The bottom parts pf all curves are rounded andsatisfied for anyEr, and Z. Besides this fact, at=0, 6,
or(eV) always exceeds unity. On the other hand, B 5jyays becomes a real number. First, we study value of the
=0.01A, oq(eV) has a ZBQD even for a small magnitude .4 ofEr/Ao=1 (Fig. 7) where the same values B /R,

of Ry/Ry except fpr the speC|aI case E’/sz.o w.here'the are chosen as in Figs. 1 and 3. The real paryofis en-
BTK theory is valid(see Fig. 4. This feature is quite differ- . ~ad with an increase Ry/R, and is almost constant as a
ent from that shown in Fig. 2. In the case of an intermediatqunction of e. At the same time, the imaginary part 6f is
barnelr stre_ngch:loi the shape_oAtrT(e\/) becc;}mes rar:hilar an increasing function o€ for all cases. There is no clear
complex(Figs. 5 and B For Ery=Ao, or(€V) has a shal- . jjiative difference between the energy dependencies of
low gap structure similar to the case of the BTK theoryRe(aL) and Im(@,) at Z=0 and 10. Next, we discuss the

(curve a). With the increase oRy/Ry, the coherent peak line shapes o for E-./A.=0.01 (Fia. 8. Re(d ) has a
structure aeV=* A, is smeared out and the voltage depen-I P - mn/A0=0.01(Fig. 8. Re(6)

Z=10 Z=0
L4l d d
L C
< [ T ¢
D g pfr—
a a
0
0.1}
B
= [
[e>) C C
£ !

O 1 I
0 g, 10 e/, 1

FIG. 7. Real(upper panelsand imaginary parts of, (lower

FIG. 5. Normalized tunneling conductance f@=1 and panel$ are plotted as a function of. Z=10 (left panel$ and Z
ETh/AO:]" (a) Rd/RbZO, (b) Rd/RbZO.l, (C) Rd/szl, (d) =0 (r|ght pane|$, with ETh/Aozl. (a) Rd/szo.l, (b) Rd/Rb
Rd/RbZZ, and(e) Rd/Rb:].O :1, (C) Rd/szz, and(d) Rd/szlo
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peak at zero voltage and decreases with the increage of Z=10 . Z=0
Im(6,) increases sharply from 0 and has a peak at about %

~Er,, except for a sufficiently large value &;. Also in e

this case, there is no qualitative difference between the line s

shapes of Re(Im),) for the Z=0 case and that foZ o

=10.

Although the magnitude of_, i.e., the measure of prox-
imity effect, is enhanced with increasiigy/R,, its influ-
ence ono(eV) is different for low and high transparent
junctions. In the low transparent junctions, the increase in the
magnitude ofé, by Ry/R, can enhance the conductance
or(eV) for eV~0 and produce a ZBCP, whereas in high
transparent junctions the enhancemengpfsuppresses the
magnitude ofor(eV). e/A, g/A,

Finally, we focus on the condition where the ZBCP ap- o
pears. We chang& and Ry/R;, for fixed Ey,. An upper FIG. 8. Real(upper panehs_and imaginary parts ob_ (lower
critical value of Ry= Ry, exists, where the ZBCP vanishes Panei$ are plotted as a function of. Z=10 (left panel$ and Z
for Ry>Ry,. For Erp=0.01A,, Ry, increases witiz and -0 (fight panels, with Ery/A,=0.01. (@ Ry/Ry=0.1, (b)

_ o Ry¢/Rp=1, (¢) Ry/R,=2, and(d) Ry4/R,= 10.
converges at nearly 1.4, F&t,=0.8\, the lower critical
value ofRy;=Ry, also appears where the ZBCP vanishes for
Ry<Rp. The ZBCP is expected foR,<Ry<Ry,. The PR, 2Ry (L
magnitude ofR,, is suppressed drastically as compared to ==
that forE;,=0.01A,. ForEt,>A,, a ZBCP region vanishes
for 0<Z<20. In order to understand the crossover from the
ZBCP to the ZBCD in much more detail, it is interesting to where ¢,(x) is the imaginary part ofg(x). The sign of
calculate the second derivative of the total resisteRes a 726, .19€* becomes negative and it can indug®R, /e
function ofe=eV ate=0. For simplicity, here we fogqs On >0 in some cases. The order @6, ,/de? and (96, ;/Je)?
the case of a sufficiently large. For e<Ao, for simplicity,  is proportional to the inverse &?2,,. The sign of?R, /€

Imag(®, /)

2

76,) dx, (19)

de

Je? L Jo

the total resistance is written as is crucially influenced by the relative magnitude of the sec-
ond term at the right-hand side of E¢L8). On the other
R=R;+Ry, (17 hand, the sign oB2R,/Je? is always negative.
For Etp<<A, and small magnitude dRy/R,,, the result-
R, Ry (L dx ing 6, , is sufficiently small and the magnitude &fR, /e
Ri= , Rzz—f TN becomes positive. When this positive contribution over-
(Ibo) L Jo coslt 6,(x)

comes the negative contribution frofAR,/de?, we can ex-

) pect a resistance minimum at zero energy, i.e., a ZBCP.
(looy=fsiné, , cosh, ;, However, with increasingRy/R,, the magnitude of

: B : 9°R,/d€* decreases due to the enhancement of the third term
with 6, =6, +16,;, wheref, , and 6, ; are the real and .0 right-hand side of Eq18), while 9°R,/de? increases.
imaginary parts o), respectively. The second derivative of Then, a critical valueRy=R,, appears, above which the
Ibo ate=0 is given by ZBCP changes into a ZBCD with an increase Rf/R,;.

This is the mechanism of the crossover from a ZBCP to a

Pl Sing, 0., . a0 ;\? ZBCD.
> = 5 tcosf ———tsing,, =, . : .
Jde A2 T 9e? T\ de When the magnitude dEy, is enhanced, the magnitudes
of the second and third terms in E4.8) are reduced, and the
sincedf /de=0 and6, ;=0 is satisfied a&=0. first term can not be neglected. The resulting magnitude of
The resulting second derivative of the total resistance at
Zero energy Is given as ETh=O'01AO ETh=O'8AO
' ' b
#R PR, R, &£ @ (®)
Je>  Je® 9e?’ Eﬂ'
ZBCP
R R, |sing 526 C
T L+ cosf  —- 0 ZBCP
de sirfd, | A§ de 0 10 0 10 20
Z Z
. a0y i\
+siné, e | | (18 FIG. 9. The parameter space where ZBCP appears.
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E£0014,  Ep=0.84, Rd/Rb=10
. BaC) ®) R ———
o« : a b NS
21} &
ZBCP tgn
0 ZBCP 0.05f
0 0.5 0 0.1
Tav Tav
FIG. 10. Similar plots as in Fig. 9 usinh,, -
9’°R, /€% is suppressed and the valueRy, is reduced. This o
is the origin of the difference iRy, in Figs. 9a) and gb). 0 2 4 8

6
It is also interesting to present similar plots as Fig. 9 using T/Em

an averaged transparency of the junctioy , FIG. 12. Sogloy is plotted as a function ofl. Ry/R,=10

i and E1,=0.01A,. (a) VZK theory, (b) Z=10, (c) Z=1, and(d)

f  CosgT(4)dg 2=0.

Tay= 5 : (200 of the order ofEry,. As a result, in this regime the conduc-
tance channel that provides a contribution proportional to
T, IS not available. Thus only the low-voltage conductance
is enhanced. On the other hand, for lafge, with E+,
~Ag,, the measure of proximity effed, is insensitive to
energy forle| <A, (see Fig. J, then the resultingr(eV) is
plways enhanced fdeV|<A,, and the degree of the promi-
nent enhancement ef(0) is weakened.

The results are shown in Fig. 10. FBr,=0.01A,, the
magnitude ofR,, decreases monotonically with increasing
T4, and it vanishes abouf,,~0.8. ForE;,=0.8),, the
magnitude ofR,, increases for an increasifg, , while that
for Ry, decreases. The ZBCP region is restricted to smal
values ofRy /Ry, .

In any way, the preferred condition for the formation of a _
ZBCP is the combination of the low transparency of the B. Tunneling conductance vs temperature: Reentrance effect
junction and the smallness of ther,/A, ratio. This situa- Finally, we look at temperature dependence of conduc-
tion is understood as follows. It is well known from the BTK tance for varioug andR,4/R, and focus on the relevance to
theory that the magnitude of the zero-bias conductance ige corresponding results in VZK theory based on the KL
almost proportional tar3, for Ry=0 for T,,<1. With the  boundary condition. We calculate tunneling conductance at
increase in the magnitude B, the measure of the proxim- nonzero temperature following
ity effect #, is enhanced fote|<Er,, and the zero-bias
conductance is proportional T, . However, the magnitude os(eV,T)=dlg /dV. (21
gL gFL) raetsfslglée :sningsz tlfr‘]elzr%”fT r(]ji|e6|t: é(élsegirsﬁ%%ae”{)f thTe[hen we define deviation of tunneling conductance from that
proximity induced minigay in the normal diffusive part DN at zero temperature given by

50’52 Us(eV,T)—U'S(ev,O). (22)

In the following, we will plot o5/ as a function of the
temperaturel (see Figs. 11-13
For Ry/R,=0.1 (curvea) andRy/R,=1 (curveb), due
to the existence of ZBCP as shown in Fig.a;s/ oy takes
negative value and decreases wlthWhile for Ry/R,=2,
dasl oy first increases and decreases agaimve c). With
the further increase of the magnitude Rf/R,, dos/oy
becomes positive, and it has maximum at a certain tempera-
ture. This effect is known as “reentrance effect.” It was pre-
dicted theoretically within the VZK theory in Ref. 29-31
and observed experimentaff{. According to the theor§? 3!
for R,—0, the maximum value oo/ oy is about 0.09 at
T/E,, temperature of the order of Thouless energy. Note that the
reentrance of the metallic conductance occurs as a function
FIG. 11. o5/ oy is plotted as a function of. Z=10 andE;,  Of bias voltage as well, but here we concentrate on the tem-
=0.014,. (8 Ry/R,=0.1, (b) Ry/R,=1, (c) R4/R,=2, and(d)  perature dependence since it was studied in most detail
Ry/R,=10. within the VZK theory.

054513-7
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or(eV) always has a ZBCD except for the case of vanishing

(3) The proximity effect can enhan¢eeduce the tunnel-
ing conductance of junctions with loghigh) transparency.

The above-mentioned criteria for the existence of a ZBCP
agree with available experimental data. However, we are not
aware of an experimental observation of ZBCD in highly
transparent junctions.

In the present paper, the superconductor is restricted to be
a conventional s-wave superconductor. However, it is well
known that a ZBCP also appears in unconventional super-
conductor junctioné?*! the origin of which is the formation
of midgap Andreev bound statédlABS).*° Indeed, a ZBCP

e T Y T has been reported in various superconductors that have an
T/Eq, anisotropic pairing symmetfA}:*?1t should be remarked that
the line shape of the ZBCP obtained in the present paper is

FIG. 13. dog/oy is plotted as a function off. Ry/R,=1 quite different from that by MABS. In the present case, the
and E1,=0.01A,. (a) VZK theory, (b) Z=10, (c) Z=1, and(d) height of or(eV) never exceeds unity, and its width is de-
Z=0. termined byE+},; while in the MABS case, the peak height
is proportional to the inverse of the magnitudeTqf, and

In order to study the consequences of our theory for théhe_l_"r‘]’idth is prot;?]ortiona:c tfrm' ¢ of ional 1
reentrance effect, we have calculated the temperature depetliwdns Fn ?t:gperreseﬁgreyo? M,&a;;phcgs geeur??grrr]r\t/a%‘tlgggnljunc_
dence of§og/oy for variousZ for fixed Ry/Ry,. For the P y

comparison with the standard VZK theory, we also plotunder the conditiorts_ of ballistic transport. _Recently, this
S0slory Using the KL boundary condition. Fat/Ry— 10, theory has been revisited to account for diffusive transport in

, the normal metal in Ref. 43, where an extension of the circuit
we always see the standard reentrant behavior.Z=oL0,  theory was provided for unconventional superconductor

we cannot see clear deviation from the VZK the@egmpare  ;nctions. A general relation was derived for matrix curBnt
curvesa andb). With the decrease of the magnitude &f i, Eq. (4), which is available for unconventional supercon-
the magnitude obo's/ oy is enhanced much strong@urves  qyctor junctions with MABS. An elaborated example dem-
c andd). Although thgre are quantitative differgnge betweengnstrated the interplay of MABS and proximity effect in a
four curves, the qualitative line shapes are similar to thosg.yave junction. It is actually quite interesting to apply this
predicted by the VZK theory. _ circuit theory to the actual calculation ofr(eV) as in the
However, situation is different for decreasiRg/R,=1.  present paper. Such a direction of study is important in order
For R4/R,=1 the resultingdos/oy takes negative value to analyze recent tunneling experiments where mesoscopic
and similar feature is also obtained 810 (see curve®t  interference effects were observed in hiih- junction
andb). At the same time, for small magnitude &fdos/oy  systemd We will present the obtained results in the near
takes positive value. As seen from these results, the deviatiogyre 45
from VZK becomes significant for small magnitude Bf In the present study, we have focused on N/S junctions.
with Ry/Rp<1. The extension of Nazarov's circuit theory to long diffusive
SIN/S junctions has been performed by Bezuglyal In
S/N/S junctions, the mechanism of multiple Andreev reflec-
IV. CONCLUSIONS tions produces the subharmonic gap structures |evi

6-53 H H
In the present paper, a detailed theoretical investigation dfurve$” - and the situation becomes much more complex
the tunneling conductance of diffusive normal metal/@S compared to N/S junctions. Moreover, in S/N/S junctions

conventional superconductor junctions is presented. Even fd¥ith unconventional superconductors, MABS lead to the
conventionals-wave junctions, the interplay between diffu- @homalous current-phase relation and temperature depen-
sive and interface scattering produces a wide variety of linélénce of the Josephson curréhan interesting problem is
shapes of the tunneling conductance: ZBCP, zBCD2N extension of the circuit theory to S/N/S junctions with
U-shaped, and rounded bottom structures. There are sevefgiconventional superconductors.

points which have been clarified in this paper.

(1) When the transparency of a junction is sufficiently low ACKNOWLEDGMENTS
and Egy, is small, the ZBCP appears f&t;<R,. With an The authors appreciate useful and fruitful discussions
increase iRy, the ZBCP changes into ZBCD. For lar§g,  with Yu. Nazarov, J. Inoue, and H. ltoh. This work was sup-
with the same order od,, the ZBCP is only expected for ported by the Core Research for Evolutional Science and
small values oRy. With increasing=y,, the ZBCP vanishes Technology(CREST of the Japan Science and Technology
when E;p>A, is satisfied. For the low transparency limit, Corporation(JST). The computational aspect of this work
the results obtained by us are reduced to those by the VZIKas been performed at the facilities of the Supercomputer
theory where the KL boundary condition is used. Center, Institute for Solid State Physics, University of Tokyo,

(2) When the transparency of the junction is almost unity,and the Computer Center.
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