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Theory of charge transport in diffusive normal metalÕconventional superconductor point contacts
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Tunneling conductance in diffusive normal~DN! metal/insulator/s-wave superconductor junctions is calcu-
lated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the
transparency of the insulating barrier. The generalized boundary condition introduced by Nazarov@Superlat-
tices and Microstructures25, 1221 ~1999!# is applied, where the ballistic theory by Blonder, Tinkham, and
Klapwijk and the diffusive theory by Volkov, Zaitsev, and Klapwijk based on the boundary condition of
Kupriyanov and Lukichev are naturally reproduced. It is shown that the proximity effect can enhance~reduce!
the tunneling conductance for junctions with a low~high! transparency. A wide variety of dependencies of
tunneling conductance on voltage bias is demonstrated including a U-shaped gap like structure, a zero-bias
conductance peak, and a zero-bias conductance dip. The temperature dependence of tunneling conductance is
also calculated, and the conditions for the reentrance effect are studied.
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I. INTRODUCTION

The electron coherence in mesoscopic superconduc
systems is one of the important topics of solid-state phys
The low-energy transport in these systems is essentially
fluenced by the Andreev reflection,1 a unique process specifi
for normal metal/superconductor interfaces. The phase
herence between incoming electrons and Andreev refle
holes persists in the diffusive normal metal at a mesosco
length scale and results in strong interference effects on
probability of Andreev reflection.2 These effects becom
prominent at sufficiently low temperatures where the therm
broadening is negligible. One of the remarkable experim
tal manifestations is the zero-bias conductance p
~ZBCP!.3–13A calculation of tunneling conductance in a no
mal metal~N!/superconductor~S! junction is an interesting
theoretical problem since quantum interference effects du
Andreev reflection are expected.

For a clean NS contact in the presence of the interf
potential barrier, the conductance was calculated by Blon
Tinkham, and Klapwijk14 ~BTK! in terms of the correspond
ing transmission coefficients on the basis of the solution
the Bogoliubov–de Gennes equations. From the genera
of boundary conditions connecting the quasiclassical Gre
functions on both sides of the interface for arbitrary tra
mission probabilities, Zaitsev15 derived the expression fo
the conductance similar to that by BTK. The BTK method14

is confined to ballistic systems. The generalization of t
method to systems with impurities has been performed
several authors~see the review in Ref. 16!. In a number of
papers, the transmission coefficients were directly calcula
by numerical methods.17,18 However, it is difficult to apply
such methods to most of relevant experimental situatio
Another approach, the so-called random matrix theory, w
employed by Beenakkeret al., where the total transmissio
coefficients are expressed in terms of those through the
mal part of the system and the normal/superconductor in
face separately.16,19Within this theory, the ZBCP observed i
0163-1829/2003/68~5!/054513~10!/$20.00 68 0545
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experiments is understood as a resonance phenomeno
lated to reflectionless tunneling.20 The scattering matrix ap
proach was later generalized to finite voltage a
temperature.21

On the other hand, a quasiclassical Green’s function
culation based on nonequilibrium superconductiv
theories22 is much more powerful and convenient for th
actual calculations.23 In this approach, the impurity scatte
ing is included in the self-consistent Born approximation a
the weak localization effects are neglected. In the theory
tunneling conductance developed by Volkov, Zaitsev, a
Klapwijk ~VZK ! by solving the Usadel equations,24 the ori-
gin of the ZBCP observed in several experiments was cl
fied to be due to the enhancement of the pair amplitude in
diffusive normal metal by the proximity effect.23 VZK ap-
plied the Kupriyanov and Lukichev~KL ! boundary condition
for the Keldysh-Nambu Green’s function.25 The KL bound-
ary condition is valid for the atomically sharp interface ba
rier dividing two diffusive metals. As shown by Lambertet
al.,26 this condition is exact in two limits of either high o
low barrier transparency, with small corrections in the int
mediate transparency range. By applying the VZK theo
several authors studied the charge transport in vari
junctions27–34 by solving the Usadel equations~see the re-
view by Belziget al.35!

The generalization of the KL boundary conditions for
arbitrary connector between diffusive metals was provid
by Nazarov within the so-called ‘‘generalized circu
theory.’’36 In this theory, the mesoscopic system is presen
as a network of nodes and connectors. A connector is c
acterized by a set of transmission coefficients and
present anything from a ballistic point contact to a tunn
junction. A conservation law of matrix current holds in ea
node. The method to derive the relation between matrix c
rent and Green’s functions puts the results of Ref. 15 to
framework of Landauer-Bu¨ttiker scattering formalism. The
boundary condition for Keldysh-Nambu Green’s functio
was derived in Ref. 36 for an arbitrary connector includi
©2003 The American Physical Society13-1
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various situations from ballistic point contact to diffusiv
contact. Actually, this boundary condition is very gene
since the BTK theory is reproduced in the ballistic lim
while in the diffusive limit with a low transmissivity of the
interface, the KL boundary condition is reproduced.

Although a number of papers were published on cha
transport in mesoscopic NS junctions, as far as we kn
almost all of them are either based on the KL boundary c
ditions or on the BTK model. However, in the actual jun
tions, transparency of the junction is not necessarily sm
and impurity scattering in the DN is important. Therefore,
interesting and important theoretical problem is the calcu
tion of the tunneling conductance in normal met
conventional superconductor junctions using the bound
condition from Ref. 36 since both the ballistic~BTK theory!
and diffusive~VZK theory! cases can be covered simult
neously. In the present paper, we study the tunneling con
tance in diffusive normal metal/insulator/conventional sup
conductor~DN/I/S! junctions for various parameters such
the height of the insulating barrier at the interface, resista
Rd in DN, and the Thouless energyETh in DN. We concen-
trate on the normalized tunneling conductance of the ju
tions sT(eV) as a function of the bias voltageV. The con-
ductancesT(eV) is given by sT(eV)5sS(eV)/sN(eV),
wheresS(N)(eV) is the tunneling conductance in the supe
conducting~normal! state at a bias voltageV.

In the present paper, the following points are clarified:
~1! When the transparency of the junction is sufficien

low, sT(eV) for ueVu,D0 is enhanced with the increase
Rd due to the enhancement of the proximity effect. T
ZBCP becomes prominent forETh!D0 and Rd /Rb,1. In
such a case, with a further increase ofRd /Rb , the ZBCP
changes into a zero bias conductance dip~ZBCD!. In the low
transparent limit, the line shapes ofsT(eV) are qualitatively
the same as those obtained by the VZK theory.23,28

~2! When the transparency of the junction is almost un
sT(eV) always exhibits a ZBCD except for the special ca
of Rd50, i.e., the BTK limit.

~3! The measure of the proximity effect,u, is mainly de-
termined byRd /Rb andETh , whereRb is the resistance from
the insulating barrier. The proximity effect enhances~re-
duces! the magnitude ofsT(eV) for junctions with low
~high! transparency.

~4! Even for junctions between conventionals-wave su-
perconductors, we can expect a wide variety of line shape
the tunneling conductance, a ZBCP, ZBCD, U-shaped st
ture, and a rounded bottom structure.

~5! We have clarified the parameter space where a ZB
should be expected. Typically, small Thouless energyETh is
required for a ZBCP. If the magnitude ofETh is increasing up
to D0, a ZBCP is only expected for junctions with low tran
missivity, Rd /Rb!1.

The organization of this paper is as follows. In Sec. II, w
will provide the detailed derivation of the expression for t
normalized tunneling conductance. In Sec. III, the results
calculations ofsT(eV) andu are presented for various type
of junctions. In Sec. IV, the summary of the obtained resu
is given.
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II. FORMULATION

In this section we introduce the model and the formalis
We consider a junction consisting of normal and superc
ducting reservoirs connected by a quasi-one-dimensional
fusive conductor~DN! with a lengthL much larger than the
mean free path. The interface between the DN conductor
the S electrode has a resistanceRb , while the DN/N inter-
face has zero resistance. The positions of the DN/N interf
of the DN/S interface are denoted asx50 andx5L, respec-
tively. According to the circuit theory, the interface betwe
DN and S is subdivided into two isotropization zones in D
and S, two ballistic zones, and a scattering zone. The size
the ballistic and scattering zones in the current flow direct
are much shorter than the coherence length. Although
generalized boundary condition of Ref. 36 is valid for arb
trary interfaces, here scattering zone is modeled as an
nitely narrow insulating barrier described by the delta fun
tion U(x)5Hd(x2L). The resulting transparency of th
junctionsTm is given byTm54 cos2f/(4 cos2f1Z2), where
Z52H/(\vF) is a dimensionless constant,f is the injection
angle measured from the interface normal to the junction
vF is Fermi velocity. Variation of the barrier shape will no
change our results in the considered case of isotropic su
conductivity in the S electrode.

We apply the quasiclassical Keldysh formalism in the f
lowing calculation of the tunneling conductance. The 434
Green’s functions in DN and S are denoted byǦ1(x) and
Ǧ2(x), which are expressed in matrix form as

Ǧ1~x!5S R̂1~x! K̂1~x!

0 Â1~x!
D , ~1!

Ǧ2~x!5S R̂2~x! K̂2~x!

0 Â2~x!
D , ~2!

where the Keldysh componentK̂1,2(x) is given byK̂1(2)(x)
5R̂1(2)(x) f̂ 1(2)(x)2 f̂ 1(2)(x)Â1(2)(x), with retarded compo-
nent R̂1,2(x), advanced componentÂ1,2(x), using distribu-
tion function f̂ 1(2)(x). In the above,R̂2(x) is expressed by

R̂2~x!5~gt̂31 f t̂2!,

with g5e/Ae22D0
2 and f 5D0 /AD0

22e2, wheree denotes
the quasiparticle energy measured from the Fermi ene
Â2(x)52R̂2* (x), and f̂ 2(x)5tanh@e/(2kBT)# in thermal
equilibrium with temperatureT. We put the electrical poten
tial zero in the S electrode. In this case the spatial dep
dence ofǦ1(x) in DN is determined by the static Usad
equation,24

D
]

]x
F Ǧ1~x!

]Ǧ1~x!

]x
G1 i @Ȟ,Ǧ1~x!#50, ~3!

with the diffusion constantD in DN, whereȞ is given by
3-2



s

-

e-

.
-

s

th
l

-

-

n

on-
t of

e,

er-

a
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Ȟ5S Ĥ0 0

0 Ĥ0
D ,

with Ĥ05et3.
The boundary condition forǦ1(x) at the DN/S interface

is given by Nazarov’s generalized boundary condition,

L

Rd
S Ǧ1

]Ǧ1

]x
D U

x5L2

5Rb
21^B&, ~4!

B5
2Tm@Ǧ1~L2!,Ǧ2~L1!#

41Tm~@Ǧ1~L2!,Ǧ2~L1!#122!
.

The average over the various angles of injected particle
the interface is defined as

^B~f!&5E
2p/2

p/2

df cosfB~f!Y E
2p/2

p/2

dfT~f!cosf,

with B(f)5B and T(f)5Tm . The resistance of the inter
face (Rb) is given by

Rb5R0

2

E
2p/2

p/2

dfT~f!cosf

.

Here R0 is the Sharvin resistance, which in thre
dimensional case is given byR0

215e2kF
2Sc /(4p2\), where

kF is the Fermi wave vector andSc is the constriction area
Note that the areaSc is in general not equal to the cros
section areaSd of the normal conductor; thereforeSc /Sd is
an independent parameter of our theory.

For Tm→0 in Eq. ~4!, the quantityB can be expressed a

B5
Tm

2
@Ǧ1 ,Ǧ2#,

and we can reproduce the KL boundary condition. On
other hand, atx50, Ǧ1(0) coincides with that in the norma
state.

The electric current is expressed usingǦ1(x) as

I el5
2L

4eRd
E

0

`

deTrF t3S Ǧ1~x!
]Ǧ1~x!

]x
D KG , ~5!

where (Ǧ1(x)@]Ǧ1(x)/]x#)K denotes the Keldysh compo
nent of „Ǧ1(x)@]Ǧ1(x)/]x#…. In the actual calculation it is
convenient to use the standardu parametrization when func
tion R̂1(x) is expressed as

R̂1~x!5 t̂3 cosu~x!1 t̂2 sinu~x!. ~6!

The parameteru(x) is a measure of the proximity effect i
DN.

Functions Â1(x) and K̂1(x) are expressed asÂ1(x)
52R̂1* (x) and K̂1(x)5R̂1(x) f̂ 1(x)2 f̂ 1(x)Â1(x), with the

distribution functionf̂ 1(x) given by f̂ 1(x)5 f l(x)1 t̂3f t(x).
05451
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In the above,f t(x) is the relevant distribution function which
determines the conductance of the junction we are now c
centrating on. From the retarded or advanced componen
the Usadel equation, the spatial dependence ofu(x) is deter-
mined by the following equation

D
]2

]x2
u~x!12i e sin@u~x!#50, ~7!

while for the Keldysh component we obtain

D
]

]x F] f t~x!

]x
cosh2u im~x!G50. ~8!

At x50, since DN is attached to the normal electrod
u(0)50, and f t(0)5 f t0 is satisfied with

f t05
1

2
$tanh@~e1eV!/~2kBT!#2tanh@~e2eV!/~2kBT!#%.

Next we focus on the boundary condition at the DN/S int
face. Taking the retarded part of Eq.~4!, we obtain

L

Rd

]u~x!

]x U
x5L2

5
^F&
Rb

, ~9!

F5
2~ f cosuL2g sinuL!Tm

~22Tm!1Tm@g cosuL1 f sinuL#
,

with uL5u(L2).
On the other hand, from the Keldysh part of Eq.~4!, we

obtain

L

Rd
S ] f t

]x D cosh2u im~x!U
x5L2

52
^I b0& f t~L2!

Rb
, ~10!

with

I b05
Tm

2 L112Tm~22Tm!L2

2u~22Tm!1Tm@g cosuL1 f sinuL#u2
,

L15~11ucosuLu21usinuLu2!~ ugu21u f u211!

14Im@ f g* #Im@cosuLsinuL* #, ~11!

L25Re$g~cosuL1cosuL* !1 f ~sinuL1sinuL* !%, ~12!

where u im(x) denotes the imaginary part ofu(x). For Tm
!1, I b0 is reduced to

I b05
Re@g~cosuL1cosuL* !1 f ~sinuL1sinuL* !#

2
Tm ,

~13!

which is the expression used in the VZK theory. After
simple manipulation, we can obtainf t(L2)

f t~L2!5
Rbf t0

Rb1
Rd^I b0&

L E
0

L dx

cosh2u im~x!

.

3-3
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Since the electric currentI el can be expressed viauL in the
following form,

I el52
L

eRd
E

0

`S ] f t

]x D U
x5L2

cosh2@ Im~uL!#de,

we obtain the following final result for the current:

I el5
1

eE0

`

de
f t0

Rb

^I b0&
1

Rd

L E
0

L dx

cosh2u im~x!

. ~14!

Then the total resistanceR at zero temperature is given by

R5
Rb

^I b0&
1

Rd

L E
0

L dx

cosh2u im~x!
, ~15!

and the tunneling conductance in the superconducting s
sS(eV) is given bysS(eV)51/R.

It should be mentioned that forRd50, uL becomes zero
due to the absence of the proximity effect. ThenI b0 is given
as follows:

I b05
~11ugu21u f u2!Tm

2 12Tm~22Tm!Re~g!

u~22Tm!1Tmgu2

5
Tm@11uGu21~Tm21!uGu4#

u12~12Tm!G2u2
, ~16!

with G5(e2Ae22D0
2)1/2/(e1Ae22D0

2)1/2 and the result-
ing sS is given by

sS~eV!5
1

R0
E

2p/2

p/2 I b0

2
cosfdf,

and reproduces that by BTK theory.
It should be remarked that in the present circuit theo

Rd /Rb can be varied independently ofTm , i.e., indepen-
dently of Z, since one can change the magnitude of the c
striction areaSc independently. In other words,Rd /Rb is no

FIG. 1. Normalized tunneling conductance forZ510 and
ETh /D051. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!
Rd /Rb52, and~e! Rd /Rb510.
05451
te

,

-

more proportional toTav(L/ l ), whereTav is the averaged
transmissivity of the barrier andl is the mean free path in th
diffusive region, respectively. Based on this fact, we c
chooseRd /Rb andZ as independent parameters.

In the following section, we will discuss the normalize
tunneling conductancesT(eV)5sS(eV)/sN(eV), where
sN(eV) is the tunneling conductance in the normal sta
given bysN(eV)5sN51/(Rd1Rb), respectively.

III. RESULTS

A. Tunneling conductance vs voltage: Zero-bias anomalies

In this section, we focus on the line shape of the tunnel
conductance. Let us first choose the relatively strong bar
Z510 ~Figs. 1 and 2! for variousRd /Rb . For ETh5D0, the
magnitude ofsT(eV) for ueVu,D0 increases with the in-
crease ofRd /Rb . First, the line shape of the tunneling co
ductance remains to be U shaped and only the height of
bottom value is enhanced~curve b). Then, with a further
increase ofRd /Rb , a rounded bottom structure~curvesc and
d) appears, and finally it changes into a nearly flat line sh
~curve e). For ETh50.01D0 ~Fig. 2!, the magnitude of

FIG. 2. Normalized tunneling conductance forZ510 and
ETh /D050.01. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!
Rd /Rb52, ~e! Rd /Rb510.

FIG. 3. Normalized tunneling conductance forZ50 and
ETh /D051. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!
Rd /Rb52, and~e! Rd /Rb510.
3-4
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sT(eV) has a ZBCP once the magnitude ofRd /Rb deviates
slightly from 0. The order of magnitude of the ZBCP wid
is given byETh . When the magnitude ofRd /Rb , exceeds
unity, the ZBCP splits into two~curve d), and finally
sT(eV) acquires a ZBCD~curve e). In the limit of an ex-
tremely strong barrier withZ→`, the results of the VZK
theory are reproduced.

On the other hand, in the fully transparent case withZ
50, the line shape of the tunneling conductance beco
quite different. ForETh5D0 ~Fig. 3!, the magnitude of
sT(eV) decreases with the increase of the magnitude
Rd /Rb . The bottom parts of all curves are rounded a
sT(eV) always exceeds unity. On the other hand, forETh
50.01D0 , sT(eV) has a ZBCD even for a small magnitud
of Rd /Rb except for the special case ofRd /Rb50 where the
BTK theory is valid~see Fig. 4!. This feature is quite differ-
ent from that shown in Fig. 2. In the case of an intermedi
barrier strength,Z51, the shape ofsT(eV) becomes rathe
complex~Figs. 5 and 6!. For ETh5D0 , sT(eV) has a shal-
low gap structure similar to the case of the BTK theo
~curve a). With the increase ofRd /Rb , the coherent peak
structure ateV56D0 is smeared out and the voltage depe

FIG. 4. Normalized tunneling conductance forZ50 and
ETh /D050.01. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!
Rd /Rb52, and~e! Rd /Rb510.

FIG. 5. Normalized tunneling conductance forZ51 and
ETh /D051. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!:
Rd /Rb52, and~e! Rd /Rb510.
05451
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dence becomes very weak as shown by curvee. For ETh
50.01D0, the ZBCP appears for a small magnitude
Rd /Rb ~see curveb). With increasing magnitude ofRd /Rb ,
the ZBCP changes into a ZBCD~curvesc–e). As compared
to theZ510 case~see Fig. 2!, the ZBCP is much more easie
to change into a ZBCD by increasing the magnitude
Rd /Rb .

It is interesting to study how various parameters influen
the proximity effect. The measure of the proximity effect
the S/N interfaceuL is plotted forZ50 and 10 with corre-
sponding parameters in Figs. 1–4. ForRd /Rb50, uL50 is
satisfied for anyETh and Z. Besides this fact, ate50, uL
always becomes a real number. First, we study value of
case ofETh /D051 ~Fig. 7! where the same values ofRd /Rb
are chosen as in Figs. 1 and 3. The real part ofuL is en-
hanced with an increase inRd /Rb and is almost constant as
function of e. At the same time, the imaginary part ofuL is
an increasing function ofe for all cases. There is no clea
qualitative difference between the energy dependencie
Re(uL) and Im(uL) at Z50 and 10. Next, we discuss th
line shapes ofuL for ETh /D050.01 ~Fig. 8!. Re(uL) has a

FIG. 6. Normalized tunneling conductance forZ51 and
ETh /D050.01. ~a! Rd /Rb50, ~b! Rd /Rb50.1, ~c! Rd /Rb51, ~d!
Rd /Rb52, and~e! Rd /Rb510.

FIG. 7. Real~upper panels! and imaginary parts ofuL ~lower
panels! are plotted as a function ofe. Z510 ~left panels! and Z
50 ~right panels!, with ETh /D051. ~a! Rd /Rb50.1, ~b! Rd /Rb

51, ~c! Rd /Rb52, and~d! Rd /Rb510.
3-5
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peak at zero voltage and decreases with the increase oe.
Im(uL) increases sharply from 0 and has a peak at aboe
;ETh , except for a sufficiently large value ofRd . Also in
this case, there is no qualitative difference between the
shapes of Re(Im)(uL) for the Z50 case and that forZ
510.

Although the magnitude ofuL , i.e., the measure of prox
imity effect, is enhanced with increasingRd /Rb , its influ-
ence onsT(eV) is different for low and high transparen
junctions. In the low transparent junctions, the increase in
magnitude ofuL by Rd /Rb can enhance the conductan
sT(eV) for eV;0 and produce a ZBCP, whereas in hig
transparent junctions the enhancement ofuL suppresses the
magnitude ofsT(eV).

Finally, we focus on the condition where the ZBCP a
pears. We changeZ and Rd /Rb for fixed ETh . An upper
critical value ofRd5Rbu exists, where the ZBCP vanishe
for Rd.Rbu . For ETh50.01D0 , Rbu increases withZ and
converges at nearly 1.4. ForETh50.8D0, the lower critical
value ofRd5Rbl also appears where the ZBCP vanishes
Rd,Rbl . The ZBCP is expected forRbl,Rd,Rbu . The
magnitude ofRbu is suppressed drastically as compared
that forETh50.01D0. ForETh.D0, a ZBCP region vanishe
for 0,Z,20. In order to understand the crossover from
ZBCP to the ZBCD in much more detail, it is interesting
calculate the second derivative of the total resistanceR as a
function of e5eV at e50. For simplicity, here we focus on
the case of a sufficiently largeZ. For e,D0, for simplicity,
the total resistance is written as

R5R11R2 , ~17!

R15
Rb

^I b0&
, R25

Rd

L E
0

L dx

cosh2 u i~x!
,

^I b0&5 f sinuL,r coshuL,i ,

with uL5uL,r1 iuL,i , whereuL,r and uL,i are the real and
imaginary parts ofuL , respectively. The second derivative
I b0 at e50 is given by

]2I b0

]e2
5

sinuL,r

D0
2

1cosuL,r

]2uL,r

]e2
1sinuL,r S ]uL,i

]e D 2

,

since]uL,r /]e50 anduL,i50 is satisfied ate50.
The resulting second derivative of the total resistance

zero energy is given as

]2R

]e2
5

]2R1

]e2
1

]2R2

]e2
,

]2R1

]e2
52

Rb

sin2uL,r
F sinuL,r

D0
2

1cosuL,r

]2uL,r

]e2

1sinuL,r S ]uL,i D 2G , ~18!

]e
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]2R2

]e2
52

2Rd

L E
0

LF]u i~x!

]e G2

dx, ~19!

where u i(x) is the imaginary part ofu(x). The sign of
]2uL,r /]e2 becomes negative and it can induce]2R1 /]e2

.0 in some cases. The order of]2uL,r /]e2 and (]uL,i /]e)2

is proportional to the inverse ofETh
2 . The sign of]2R1 /]e2

is crucially influenced by the relative magnitude of the se
ond term at the right-hand side of Eq.~18!. On the other
hand, the sign of]2R2 /]e2 is always negative.

For ETh!D0 and small magnitude ofRd /Rb , the result-
ing uL,r is sufficiently small and the magnitude of]2R1 /]e2

becomes positive. When this positive contribution ov
comes the negative contribution from]2R2 /]e2, we can ex-
pect a resistance minimum at zero energy, i.e., a ZB
However, with increasingRd /Rb , the magnitude of
]2R1 /]e2 decreases due to the enhancement of the third t
in the right-hand side of Eq.~18!, while ]2R2 /]e2 increases.
Then, a critical valueRd5Rbu appears, above which th
ZBCP changes into a ZBCD with an increase ofRd /Rb .
This is the mechanism of the crossover from a ZBCP to
ZBCD.

When the magnitude ofETh is enhanced, the magnitude
of the second and third terms in Eq.~18! are reduced, and the
first term can not be neglected. The resulting magnitude

FIG. 8. Real~upper panels! and imaginary parts ofuL ~lower
panels! are plotted as a function ofe. Z510 ~left panels! and Z
50 ~right panels!, with ETh /D050.01. ~a! Rd /Rb50.1, ~b!
Rd /Rb51, ~c! Rd /Rb52, and~d! Rd /Rb510.

FIG. 9. The parameter space where ZBCP appears.
3-6
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]2R1 /]e2 is suppressed and the value ofRbu is reduced. This
is the origin of the difference inRbu in Figs. 9~a! and 9~b!.

It is also interesting to present similar plots as Fig. 9 us
an averaged transparency of the junctionTav ,

Tav5

E
2p/2

p/2

cosfT~f!df

2
. ~20!

The results are shown in Fig. 10. ForETh50.01D0, the
magnitude ofRbu decreases monotonically with increasin
Tav , and it vanishes aboutTav;0.8. ForETh50.8D0, the
magnitude ofRbl increases for an increasingTav , while that
for Rbu decreases. The ZBCP region is restricted to sm
values ofRd /Rb .

In any way, the preferred condition for the formation of
ZBCP is the combination of the low transparency of t
junction and the smallness of theETh /D0 ratio. This situa-
tion is understood as follows. It is well known from the BT
theory that the magnitude of the zero-bias conductanc
almost proportional toTav

2 for Rd50 for Tav!1. With the
increase in the magnitude ofRd , the measure of the proxim
ity effect uL is enhanced forueu,ETh , and the zero-bias
conductance is proportional toTav . However, the magnitude
of uL at finite energy in the rangeETh,ueu,D0 is drastically
suppressed as shown in Fig. 8, due to the existence o
proximity induced minigap37 in the normal diffusive part DN

FIG. 10. Similar plots as in Fig. 9 usingTav .

FIG. 11. dsS /sN is plotted as a function ofT. Z510 andETh

50.01D0. ~a! Rd /Rb50.1, ~b! Rd /Rb51, ~c! Rd /Rb52, and~d!
Rd /Rb510.
05451
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of the order ofETh . As a result, in this regime the conduc
tance channel that provides a contribution proportional
Tav is not available. Thus only the low-voltage conductan
is enhanced. On the other hand, for largeETh with ETh
;D0, the measure of proximity effectuL is insensitive to
energy forueu,D0 ~see Fig. 7!, then the resultingsT(eV) is
always enhanced forueVu,D0, and the degree of the prom
nent enhancement ofsT(0) is weakened.

B. Tunneling conductance vs temperature: Reentrance effect

Finally, we look at temperature dependence of cond
tance for variousZ andRd /Rb and focus on the relevance t
the corresponding results in VZK theory based on the
boundary condition. We calculate tunneling conductance
nonzero temperature following

sS~eV,T!5dIel /dV. ~21!

Then we define deviation of tunneling conductance from t
at zero temperature given by

dsS5sS~eV,T!2sS~eV,0!. ~22!

In the following, we will plot dsS /sN as a function of the
temperatureT ~see Figs. 11–13!.

For Rd /Rb50.1 ~curvea) andRd /Rb51 ~curveb), due
to the existence of ZBCP as shown in Fig. 2,dsS /sN takes
negative value and decreases withT. While for Rd /Rb52,
dsS /sN first increases and decreases again~curve c!. With
the further increase of the magnitude ofRd /Rb , dsS /sN
becomes positive, and it has maximum at a certain temp
ture. This effect is known as ‘‘reentrance effect.’’ It was pr
dicted theoretically within the VZK theory in Ref. 29–3
and observed experimentally.38. According to the theory,29–31

for Rb→0, the maximum value ofdsS /sN is about 0.09 at
temperature of the order of Thouless energy. Note that
reentrance of the metallic conductance occurs as a func
of bias voltage as well, but here we concentrate on the t
perature dependence since it was studied in most d
within the VZK theory.

FIG. 12. dsS /sN is plotted as a function ofT. Rd /Rb510
and ETh50.01D0. ~a! VZK theory, ~b! Z510, ~c! Z51, and ~d!
Z50.
3-7
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In order to study the consequences of our theory for
reentrance effect, we have calculated the temperature de
dence ofdsS /sN for various Z for fixed Rd /Rb . For the
comparison with the standard VZK theory, we also p
dsS /sN using the KL boundary condition. ForRd /Rb510,
we always see the standard reentrant behavior. ForZ510,
we cannot see clear deviation from the VZK theory~compare
curvesa and b). With the decrease of the magnitude ofZ,
the magnitude ofdsS /sN is enhanced much stronger~curves
c andd). Although there are quantitative difference betwe
four curves, the qualitative line shapes are similar to th
predicted by the VZK theory.

However, situation is different for decreasingRd /Rb51.
For Rd /Rb51 the resultingdsS /sN takes negative value
and similar feature is also obtained forZ510 ~see curvesa
andb). At the same time, for small magnitude ofZ, dsS /sN
takes positive value. As seen from these results, the devia
from VZK becomes significant for small magnitude ofZ
with Rd /Rb,1.

IV. CONCLUSIONS

In the present paper, a detailed theoretical investigatio
the tunneling conductance of diffusive normal met
conventional superconductor junctions is presented. Even
conventionals-wave junctions, the interplay between diffu
sive and interface scattering produces a wide variety of
shapes of the tunneling conductance: ZBCP, ZBC
U-shaped, and rounded bottom structures. There are se
points which have been clarified in this paper.

~1! When the transparency of a junction is sufficiently lo
and ETh is small, the ZBCP appears forRd,Rb . With an
increase inRd , the ZBCP changes into ZBCD. For largeETh
with the same order ofD0, the ZBCP is only expected fo
small values ofRd . With increasingETh , the ZBCP vanishes
when ETh.D0 is satisfied. For the low transparency lim
the results obtained by us are reduced to those by the V
theory where the KL boundary condition is used.

~2! When the transparency of the junction is almost un

FIG. 13. dsS /sN is plotted as a function ofT. Rd /Rb51
and ETh50.01D0. ~a! VZK theory, ~b! Z510, ~c! Z51, and ~d!
Z50.
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sT(eV) always has a ZBCD except for the case of vanish
Rd .

~3! The proximity effect can enhance~reduce! the tunnel-
ing conductance of junctions with low~high! transparency.

The above-mentioned criteria for the existence of a ZB
agree with available experimental data. However, we are
aware of an experimental observation of ZBCD in high
transparent junctions.

In the present paper, the superconductor is restricted t
a conventional s-wave superconductor. However, it is w
known that a ZBCP also appears in unconventional sup
conductor junctions,40,41 the origin of which is the formation
of midgap Andreev bound states~MABS!.39 Indeed, a ZBCP
has been reported in various superconductors that hav
anisotropic pairing symmetry.41,42 It should be remarked tha
the line shape of the ZBCP obtained in the present pape
quite different from that by MABS. In the present case, t
height of sT(eV) never exceeds unity, and its width is d
termined byETh ; while in the MABS case, the peak heigh
is proportional to the inverse of the magnitude ofTm , and
the width is proportional toTm .

The proper theory of transport of unconventional jun
tions in the presence of MABS has been formulated40,41only
under the conditions of ballistic transport. Recently, th
theory has been revisited to account for diffusive transpor
the normal metal in Ref. 43, where an extension of the circ
theory was provided for unconventional superconduc
junctions. A general relation was derived for matrix currenB
in Eq. ~4!, which is available for unconventional superco
ductor junctions with MABS. An elaborated example dem
onstrated the interplay of MABS and proximity effect in
d-wave junction. It is actually quite interesting to apply th
circuit theory to the actual calculation ofsT(eV) as in the
present paper. Such a direction of study is important in or
to analyze recent tunneling experiments where mesosc
interference effects were observed in high-TC junction
systems.44 We will present the obtained results in the ne
future.45

In the present study, we have focused on N/S junctio
The extension of Nazarov’s circuit theory to long diffusiv
S/N/S junctions has been performed by Bezuglyiet al.33 In
S/N/S junctions, the mechanism of multiple Andreev refle
tions produces the subharmonic gap structures onI -V
curves46–53 and the situation becomes much more comp
as compared to N/S junctions. Moreover, in S/N/S junctio
with unconventional superconductors, MABS lead to t
anomalous current-phase relation and temperature de
dence of the Josephson current.54 An interesting problem is
an extension of the circuit theory to S/N/S junctions w
unconventional superconductors.
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