251 research outputs found
Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer
The cosmic-ray proton, helium, and muon spectra at small atmospheric depths
of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period
of the BESS-2001 balloon flight. The variation of atmospheric secondary
particle fluxes as a function of atmospheric depth provides fundamental
information to study hadronic interactions of the primary cosmic rays with the
atmosphere.Comment: 21 pages, 11 figures, 4 table
Neutron beam test of CsI crystal for dark matter search
We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear
recoils and 's below 10 keV. The response of CsI crystals to nuclear
recoil was studied with mono-energetic neutrons produced by the
H(p,n)He reaction. This was compared to the response to Compton
electrons scattered by 662 keV -ray. Pulse shape discrimination between
the response to these 's and nuclear recoils was studied, and quality
factors were estimated. The quenching factors for nuclear recoils were derived
for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
Measurements of Atmospheric Antiprotons
We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4
GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to
26 g/cm^2. The observed energy spectra, including our previous measurements at
mountain altitude, were compared with estimated spectra calculated on various
assumptions regarding the energy distribution of antiprotons that interacted
with air nuclei.Comment: Accepted for publication in PL
Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer
We measured low energy cosmic-ray proton and helium spectra in the kinetic
energy range 0.215 - 21.5 GeV/n at different solar activities during a period
from 1997 to 2002. The observations were carried out with the BESS spectrometer
launched on a balloon at Lynn Lake, Canada. A calculation for the correction of
secondary particle backgrounds from the overlying atmosphere was improved by
using the measured spectra at small atmospheric depths ranging from 5 through
37 g/cm^2. The uncertainties including statistical and systematic errors of the
obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for
helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic
Constraints on the CMB temperature redshift dependence from SZ and distance measurements
The relation between redshift and the CMB temperature,
is a key prediction of standard cosmology, but is violated in many non-standard
models. Constraining possible deviations to this law is an effective way to
test the CDM paradigm and search for hints of new physics. We present
state-of-the-art constraints, using both direct and indirect measurements. In
particular, we point out that in models where photons can be created or
destroyed, not only does the temperature-redshift relation change, but so does
the distance duality relation, and these departures from the standard behaviour
are related, providing us with an opportunity to improve constraints. We show
that current datasets limit possible deviations of the form
to be up to a redshift
. We also discuss how, with the next generation of space and
ground-based experiments, these constraints can be improved by more than one
order of magnitude.Comment: 27 pages, 11 figure
Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight
The BESS-Polar spectrometer had its first successful balloon flight over
Antarctica in December 2004. During the 8.5-day long-duration flight, almost
0.9 billion events were recorded and 1,520 antiprotons were detected in the
energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum
obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to
probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters
Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer
Primary and atmospheric cosmic-ray spectra were precisely measured with the
BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve
seven times higher resolution in momentum measurement. We report absolute
fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and
1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the
momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.
Precise Measurements of Atmospheric Muon Fluxes with the BESS Spectrometer
The vertical absolute fluxes of atmospheric muons and muon charge ratio have
been measured precisely at different geomagnetic locations by using the BESS
spectrometer. The observations had been performed at sea level (30 m above sea
level) in Tsukuba, Japan, and at 360 m above sea level in Lynn Lake, Canada.
The vertical cutoff rigidities in Tsukuba (36.2 N, 140.1 E) and in Lynn Lake
(56.5 N, 101.0 W) are 11.4 GV and 0.4 GV, respectively. We have obtained
vertical fluxes of positive and negative muons in a momentum range from 0.6 to
20 GeV/c with systematic errors less than 3 % in both measurements. By
comparing the data collected at two different geomagnetic latitudes, we have
seen an effect of cutoff rigidity. The dependence on the atmospheric pressure
and temperature, and the solar modulation effect have been also clearly
observed. We also clearly observed the decrease of charge ratio of muons at low
momentum side with at higher cutoff rigidity region.Comment: 35 pages, 9 figures. Submitted to Astroparticle Physic
CHERCAM: A Cherenkov imager for the CREAM experiment
International audienceThe CREAM experiment (Cosmic Ray Energetics and Mass) is dedicated to the measurement of the energy spectrum of nuclear elements in cosmic rays, over the range 10 to 10 eV. The individual elements separation, which is a key feature of CREAM, requires instruments with strong identification capabilities. A proximity focused type of Cherenkov imager, CHERCAM (CHERenkov CAMera), providing both a good signature of downgoing Z=1 particles and good single element separation through the whole range of nuclear charges [Buénerd et al. 28th ICRC, Tsukuba, OG 1.5, 2003, p. 2157], is under development. After a brief introduction, the main features and the construction status of the CHERCAM are being summarized
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
- …