197 research outputs found

    Quantum Anti-Zeno Effect

    Get PDF
    We demonstrate that near threshold decay processes may be accelerated by repeated measurements. Examples include near threshold photodetachment of an electron from a negative ion, and spontaneous emission in a cavity close to the cutoff frequency, or in a photon band gap material.Comment: 4 pages, 3 figure

    The Time-Energy Uncertainty Relation

    Full text link
    The time energy uncertainty relation has been a controversial issue since the advent of quantum theory, with respect to appropriate formalisation, validity and possible meanings. A comprehensive account of the development of this subject up to the 1980s is provided by a combination of the reviews of Jammer (1974), Bauer and Mello (1978), and Busch (1990). More recent reviews are concerned with different specific aspects of the subject. The purpose of this chapter is to show that different types of time energy uncertainty relation can indeed be deduced in specific contexts, but that there is no unique universal relation that could stand on equal footing with the position-momentum uncertainty relation. To this end, we will survey the various formulations of a time energy uncertainty relation, with a brief assessment of their validity, and along the way we will indicate some new developments that emerged since the 1990s.Comment: 33 pages, Latex. This expanded version (prepared for the 2nd edition of "Time in quantum mechanics") contains minor corrections, new examples and pointers to some additional relevant literatur

    DFSeer: A visual analytics approach to facilitate model selection for demand forecasting

    Get PDF
    Selecting an appropriate model to forecast product demand is critical to the manufacturing industry. However, due to the data complexity, market uncertainty and users' demanding requirements for the model, it is challenging for demand analysts to select a proper model. Although existing model selection methods can reduce the manual burden to some extent, they often fail to present model performance details on individual products and reveal the potential risk of the selected model. This paper presents DFSeer, an interactive visualization system to conduct reliable model selection for demand forecasting based on the products with similar historical demand. It supports model comparison and selection with different levels of details. Besides, it shows the difference in model performance on similar products to reveal the risk of model selection and increase users' confidence in choosing a forecasting model. Two case studies and interviews with domain experts demonstrate the effectiveness and usability of DFSeer.Comment: 10 pages, 5 figures, ACM CHI 202

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    Naming Proofs in Classical Propositional Logic

    Get PDF
    Rapport interne.We present a theory of proof denotations in classical propositional logic. The abstract definition is in terms of a semiring of weights, and two concrete instances are explored. With the Boolean semiring we get a theory of classical proof nets, with a geometric correctness criterion, a sequentialization theorem, and a strongly normalizing cut-elimination procedure. With the semiring of natural numbers, we obtain a sound semantics for classical logic, in which fewer proofs are identified. Though a "real'' sequentialization theorem is missing, these proof nets have a grip on complexity issues. In both cases the cut elimination procedure is closely related to its equivalent in the calculus of structures, and we get "Boolean'' categories which are not posets

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    Longitudinal retinal changes in MOGAD

    Get PDF
    OBJECTIVE: Patients with myelin oligodendrocyte glycoprotein antibody (MOG-IgG) associated disease (MOGAD) suffer from severe optic neuritis (ON) leading to retinal neuro-axonal loss, which can be quantified by optical coherence tomography (OCT). We assessed whether ON-independent retinal atrophy can be detected in MOGAD. METHODS: Eighty MOGAD patients and 139 healthy controls (HC) were included. OCT data was acquired with 1) Spectralis spectral domain OCT (MOGAD (N=66) and HC (N=103)) and 2) Cirrus HD-OCT (MOGAD (N=14) and HC (N=36)). Macular combined ganglion cell and inner plexiform layer (GCIPL) and peripapillary retinal nerve fibre layer (pRNFL) were quantified. RESULTS: At baseline, GCIPL and pRNFL were lower in MOGAD eyes with a history of ON (MOGAD-ON) compared with MOGAD eyes without a history of ON (MOGAD-NON) and HC (p12 months ago (p<0.001). The overall MOGAD cohort did not exhibit faster GCIPL thinning compared with HC. INTERPRETATION: Our study suggests the absence of attack-independent retinal damage in MOGAD. Yet, ongoing neuroaxonal damage or oedema resolution seems to occur for up to 12 months after ON, which is longer than what has been reported with other ON forms. These findings support that the pathomechanisms underlying optic nerve involvement and the evolution of OCT retinal changes after ON is distinct in MOGAD. This article is protected by copyright. All rights reserved
    corecore