121 research outputs found

    Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Holographic Dark Energy Model

    Full text link
    In this letter, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system- one component is the holographic dark energy model and the other component is in the form of dust.Comment: 8 page

    Interacting Three Fluid System and Thermodynamics of the Universe Bounded by the Event Horizon

    Full text link
    The work deals with the thermodynamics of the universe bounded by the event horizon. The matter in the universe has three constituents namely dark energy, dark matter and radiation in nature and interaction between then is assumed. The variation of entropy of the surface of the horizon is obtained from unified first law while matter entropy variation is calculated from the Gibbss' law. Finally, validity of the generalized second law of thermodynamics is examined and conclusions are written point wise.Comment: 7 page

    Braneworld models with a non-minimally coupled phantom bulk field: a simple way to obtain the -1-crossing at late times

    Full text link
    We investigate general braneworld models, with a non-minimally coupled phantom bulk field and arbitrary brane and bulk matter contents. We show that the effective dark energy of the brane-universe acquires a dynamical nature, as a result of the non-minimal coupling which provides a mechanism for an indirect "bulk-brane interaction" through gravity. For late-time cosmological evolution and without resorting to special ansatzes or to specific areas of the parameter space, we show that the -1-crossing of its equation-of-state parameter is general and can be easily achieved. As an example we provide a simple, but sufficiently general, approximate analytical solution, that presents the crossing behavior.Comment: 11 pages, 2 figure

    Cyclic Universes from General Collisionless Braneworld Models

    Get PDF
    We investigate the full 5D dynamics of general braneworld models. Without making any further assumptions we show that cyclic behavior can arise naturally in a fraction of physically accepted solutions. The model does not require brane collisions, which in the stationary case remain fixed, and cyclicity takes place on the branes. We indicate that the cosmological constants play the central role for the realization of cyclic solutions and we show that its extremely small value on the observable universe makes the period of the cycles and the maximum scale factor astronomically large.Comment: 17 pages, 1 figure, version published in Nucl. Phys.

    An efficient algorithm simulating a macroscopic system at the critical point

    Get PDF
    It is well known that conventional simulation algorithms are inefficient for the statistical description of macroscopic systems exactly at the critical point due to the divergence of the corresponding relaxation time (critical slowing down). On the other hand the dynamics in the order parameter space is simplified significantly in this case due to the onset of self-similarity in the associated fluctuation patterns. As a consequence the effective action at the critical point obtains a very simple form. In the present work we show that this simplified action can be used in order to simulate efficiently the statistical properties of a macroscopic system exactly at the critical point. Using the proposed algorithm we generate an ensemble of configurations resembling the characteristic fractal geometry of the critical system related to the self-similar order parameter fluctuations. As an example we simulate the one-component real scalar field theory at the transition point T=TcT=T_c as a representative system belonging to the 3D3-D Ising universality class.Comment: 10 pages, 6 figures, submitted for publication to Journal of Computational Physic

    Scalar-Tensor Theory of Gravity and Generalized Second Law of Thermodynamics on the Event Horizon

    Full text link
    In blackhole physics, the second law of thermodynamics is generally valid whether the blackhole is a static or a non-static one. Considering the universe as a thermodynamical system the second law of blackhole dynamics extends to the non-negativity of the sum of the entropy of the matter and the horizon, known as generalized second law of thermodynamics(GSLT). Here, we have assumed the universe to be bounded by the event-horizon or filled with perfect fluid and holographic dark energy in two cases. Thus considering entropy to be an arbitrary function of the area of the event-horizon, we have tried to find the conditions and the restrictions over the scalar field and equation of state for the validity of the GSLT and both in quintessence-era and in phantom-era in scalar tensor theory.Comment: 8 page

    Phase-space analysis of interacting phantom cosmology

    Full text link
    We perform a detailed phase-space analysis of various phantom cosmological models, where the dark energy sector interacts with the dark matter one. We examine whether there exist late-time scaling attractors, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. We find that all the examined models, although accepting stable late-time accelerated solutions, cannot alleviate the coincidence problem, unless one imposes a form of fine-tuning in the model parameters. It seems that interacting phantom cosmology cannot fulfill the basic requirement that led to its construction.Comment: 6 figures, use revtex, v2: minor corrections, references added, accepted for publication in JCA

    Non-minimally coupled canonical, phantom and quintom models of holographic dark energy

    Full text link
    We investigate canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, in the framework of holographic dark energy. We classify them and we discuss their cosmological implications. In particular, we examine the present value of the dark energy equation-of-state parameter and the crossing through the phantom divide, and we extract the conditions for a future cosmological singularity. The combined scenarios are in agreement with observations and reveal interesting cosmological behaviors.Comment: 9 pages, 5 figures, version published in Phys. Lett.

    Constraints on massive gravity theory from big bang nucleosynthesis

    Full text link
    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.Comment: 5 page
    corecore