117 research outputs found
Stochastic volatility and leverage effect
We prove that a wide class of correlated stochastic volatility models exactly
measure an empirical fact in which past returns are anticorrelated with future
volatilities: the so-called ``leverage effect''. This quantitative measure
allows us to fully estimate all parameters involved and it will entail a deeper
study on correlated stochastic volatility models with practical applications on
option pricing and risk management.Comment: 4 pages, 2 figure
Dynamics of Higher Spin Fields and Tensorial Space
The structure and the dynamics of massless higher spin fields in various
dimensions are reviewed with an emphasis on conformally invariant higher spin
fields. We show that in D=3,4,6 and 10 dimensional space-time the conformal
higher spin fields constitute the quantum spectrum of a twistor-like particle
propagating in tensorial spaces of corresponding dimensions. We give a detailed
analysis of the field equations of the model and establish their relation with
known formulations of free higher spin field theory.Comment: JHEP3 style, 40 pages; v2 typos corrected, comments and references
added; v3 published versio
Neutron and muon characterisation techniques for battery materials
Neutron and muon characterisation techniques offer unique capabilities for investigating the complex structure and dynamics of rechargeable battery systems. Whilst the non-monotonic interaction of the neutron with the nuclei of atoms makes it sensitive to light and neighbouring elements in the periodic table, its weakly interacting nature allows it to penetrate deep into the sample without damaging it, enabling the flexible use of complex sample environments such as in situ/in operando cells. Meanwhile, the also non-invasive nature of an implanted positive muon allows it to be used as a probe to study bulk ionic diffusion phenomena within materials at different depths by tuning the energy of the incident muons. This review discusses the application of relevant neutron and muon characterisation techniques to the study of specific phenomena in ion batteries, highlighting key literature cases that serve as the archetypal example for the utility of each technique. Furthermore, this review includes an accessible overview of the working principles of each technique that has been condensed and optimised to provide a basic understanding of their relevance to the particular challenges they can address
Consistent interactions of dual linearized gravity in D=5: couplings with a topological BF model
Under some plausible assumptions, we find that the dual formulation of
linearized gravity in D=5 can be nontrivially coupled to the topological BF
model in such a way that the interacting theory exhibits a deformed gauge
algebra and some deformed, on-shell reducibility relations. Moreover, the
tensor field with the mixed symmetry (2,1) gains some shift gauge
transformations with parameters from the BF sector.Comment: 63 pages, accepted for publication in Eur. Phys. J.
Investigation of sodium insertion in hard carbon with operando small angle neutron scattering
Sodium-ion battery technology is a promising and more sustainable alternative to its more conventional lithium-ion based counterpart. The most common anode material for these systems is a disordered form of graphite known as hard carbon. The inherent disorder in these carbons results in multiple possible pathways for sodium storage making the characterisation of sodiation mechanisms during cycling highly challenging. Here, we report an operando small angle neutron scattering (SANS) investigation of sodiation in a commercial hard carbon using a custom electrochemical cell. We demonstrate that it is possible to discern different sodiation mechanisms throughout cycling and provide supporting evidence for a three-stage model in which sodium ions are first adsorbed onto the surface of particles, then intercalated into the graphene layers, and finally inserted into the nanopores during the electrochemical stage known as the plateau region. This study showcases the unique capabilities of operando SANS for the characterisation of sodiation mechanisms of carbon-based, disordered, porous materials
On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)
In October 1924, the Physical Review, a relatively minor journal at the time,
published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Van Vleck combined advanced
techniques of classical mechanics with Bohr's correspondence principle and
Einstein's quantum theory of radiation to find quantum analogues of classical
expressions for the emission, absorption, and dispersion of radiation. For
modern readers Van Vleck's paper is much easier to follow than the famous paper
by Kramers and Heisenberg on dispersion theory, which covers similar terrain
and is widely credited to have led directly to Heisenberg's "Umdeutung" paper.
This makes Van Vleck's paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did
not take the next step and develop matrix mechanics himself.Comment: 82 page
Risk of End-Stage Liver Disease in HIV-Viral Hepatitis Coinfected Persons in North America From the Early to Modern Antiretroviral Therapy Eras
Background. Human immunodeficiency virus (HIV)–infected patients coinfected with hepatitis B (HBV) and C (HCV) viruses are at increased risk of end-stage liver disease (ESLD). Whether modern antiretroviral therapy has reduced ESLD risk is unknown
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
- …