190 research outputs found

    Benchmark Parameters for CMB Polarization Experiments

    Full text link
    The recently detected polarization of the cosmic microwave background (CMB) holds the potential for revealing the physics of inflation and gravitationally mapping the large-scale structure of the universe, if so called B-mode signals below 10^{-7}, or tenths of a uK, can be reliably detected. We provide a language for describing systematic effects which distort the observed CMB temperature and polarization fields and so contaminate the B-modes. We identify 7 types of effects, described by 11 distortion fields, and show their association with known instrumental systematics such as common mode and differential gain fluctuations, line cross-coupling, pointing errors, and differential polarized beam effects. Because of aliasing from the small-scale structure in the CMB, even uncorrelated fluctuations in these effects can affect the large-scale B modes relevant to gravitational waves. Many of these problems are greatly reduced by having an instrumental beam that resolves the primary anisotropies (FWHM << 10'). To reach the ultimate goal of an inflationary energy scale of 3 \times 10^{15} GeV, polarization distortion fluctuations must be controlled at the 10^{-2}-10^{-3} level and temperature leakage to the 10^{-4}-10^{-3} level depending on effect. For example pointing errors must be controlled to 1.5'' rms for arcminute scale beams or a percent of the Gaussian beam width for larger beams; low spatial frequency differential gain fluctuations or line cross-coupling must be eliminated at the level of 10^{-4} rms.Comment: 11 pages, 5 figures, submitted to PR

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials

    Get PDF
    A wide selection of thermal, chemical and optical methods have been proposed for the quantification of black carbon (BC) in environmental matrices, and the results to date differ markedly depending upon the method used. A new approach is hydropyrolysis (hypy), where pyrolysis assisted by high hydrogen pressures (150 bar) facilitates the complete reductive removal of labile organic matter, so isolating a highly stable portion of the BC continuum (defined as BChypy). Here, the potential of hypy for the isolation and quantification of BC is evaluated using the 12 reference materials from the International BC Ring Trial, comprising BC-rich samples, BC-containing environmental matrices and BC-free potentially interfering materials. By varying the hypy operating conditions, it is demonstrated that lignocellulosic, humic and other labile organic carbon material (defined as non-BChypy) is fully removed by 550 °C, with hydrogasification of the remaining BChypy not commencing until over 575 °C. The resulting plateau in sample mass and carbon loss is apparent in all of the environmental samples, facilitating BC quantification in a wide range of materials. The BChypy contents for all 12 ring trial samples fall within the range reported in the BC inter-comparison study, and systematic differences with other methods are rationalised. All methods for BC isolation, including hypy are limited by the fact that BC cannot be distinguished from extremely thermally mature organic matter; for example in high rank coals. However, the data reported here indicates that BChypy has an atomic H/C ratio of less than 0.5 and therefore comprises a chemically well-defined polyaromatic structure in terms of the average size of peri-condensed aromatic clusters of &gt;7 rings (24 carbon atoms), that is consistent across different sample matrices. This, together with the sound underlying rationale for the reductive removal of labile organic matter, makes hypy an ideal approach for matrix independent BC quantification. The hypy results are extremely reproducible, with BChypy determinations from triplicate analyses typically within ±2% across all samples, limited mainly by the precision of the elemental analyser

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3â€Č-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
    • 

    corecore