131 research outputs found

    Viability of primordial black holes as short period gamma-ray bursts

    Full text link
    It has been proposed that the short period gamma-ray bursts, which occur at a rate of ∌10yr−1\sim 10 {\rm yr^{-1}}, may be evaporating primordial black holes (PBHs). Calculations of the present PBH evaporation rate have traditionally assumed that the PBH mass function varies as MBH−5/2M_{{\rm BH}}^{-5/2}. This mass function only arises if the density perturbations from which the PBHs form have a scale invariant power spectrum. It is now known that for a scale invariant power spectrum, normalised to COBE on large scales, the PBH density is completely negligible, so that this mass function is cosmologically irrelevant. For non-scale-invariant power spectra, if all PBHs which form at given epoch have a fixed mass then the PBH mass function is sharply peaked around that mass, whilst if the PBH mass depends on the size of the density perturbation from which it forms, as is expected when critical phenomena are taken into account, then the PBH mass function will be far broader than MBH−5/2 M_{{\rm BH}}^{-5/2}. In this paper we calculate the present day PBH evaporation rate, using constraints from the diffuse gamma-ray background, for both of these mass functions. If the PBH mass function has significant finite width, as recent numerical simulations suggest, then it is not possible to produce a present day PBH evaporation rate comparable with the observed short period gamma-ray burst rate. This could also have implications for other attempts to detect evaporating PBHs.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D with additional reference

    A novel photocatalytic conversion of Tryptophan to Kynurenine using black light as a light source

    Get PDF
    The photocatalytic conversion of an aqueous solution of l-tryptophan (Trp) to kynurenine (KN) was investigated under the illumination of different light sources. Results show that Trp converted to KN with a selectivity of 64% under the illumination of a medium pressure (MP) Hg lamp. KN selectivity was increased to >90% when black light (BL) was used a light source. The novel use of BL in the photocatalytic conversion of Trp to KN significantly reduces the energy consumption compared with MP ligh

    Fast Diffusion Process in Quenched hcp Dilute Solid 3^3He-4^4He Mixture

    Full text link
    The study of phase structure of dilute 3^3He - 4^4He solid mixture of different quality is performed by spin echo NMR technique. The diffusion coefficient is determined for each coexistent phase. Two diffusion processes are observed in rapidly quenched (non-equilibrium) hcp samples: the first process has a diffusion coefficient corresponding to hcp phase, the second one has huge diffusion coefficient corresponding to liquid phase. That is evidence of liquid-like inclusions formation during fast crystal growing. It is established that these inclusions disappear in equilibrium crystals after careful annealing.Comment: 7 pages, 3 figures, QFS200

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t−3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    A recurrent de novo MAX p.Arg60Gln variant causes a syndromic overgrowth disorder through differential expression of c-Myc target genes

    Get PDF
    Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    • 

    corecore