11 research outputs found

    Rotating black hole orbit functionals in the frequency domain

    Full text link
    In many astrophysical problems, it is important to understand the behavior of functions that come from rotating (Kerr) black hole orbits. It can be particularly useful to work with the frequency domain representation of those functions, in order to bring out their harmonic dependence upon the fundamental orbital frequencies of Kerr black holes. Although, as has recently been shown by W. Schmidt, such a frequency domain representation must exist, the coupled nature of a black hole orbit's rr and θ\theta motions makes it difficult to construct such a representation in practice. Combining Schmidt's description with a clever choice of timelike coordinate suggested by Y. Mino, we have developed a simple procedure that sidesteps this difficulty. One first Fourier expands all quantities using Mino's time coordinate λ\lambda. In particular, the observer's time tt is decomposed with λ\lambda. The frequency domain description is then built from the λ\lambda-Fourier expansion and the expansion of tt. We have found this procedure to be quite simple to implement, and to be applicable to a wide class of functionals. We test the procedure using a simple test function, and then apply it in a particularly interesting case, the Weyl curvature scalar ψ4\psi_4 used in black hole perturbation theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a vastly improved algorithm due to Drasco for computing the Fourier transforms. Drasco has been added as an author. Also fixed some references and exterminated a small herd of typos; final published versio

    Enigma of ultraluminous X-ray sources may be resolved by 3D-spectroscopy (MPFS data)

    Full text link
    The ultraluminous X-ray sources (ULXs) were isolated in external galaxies for the last 5 years. Their X-ray luminosities exceed 100-10000 times those of brightest Milky Way black hole binaries and they are extremely variable. There are two models for the ULXs, the best black hole candidates. 1. They are supercritical accretion disks around a stellar mass black hole like that in SS433, observed close to the disk axes. 2. They are Intermediate Mass Black Holes (of 100-10000 solar masses). Critical observations which may throw light upon the ULXs nature come from observations of nebulae around the ULXs. We present results of 3D-spectroscopy of nebulae around several ULXs located in galaxies at 3-6 Mpc distances. We found that the nebulae to be powered by their central black holes. The nebulae are shocked and dynamically perturbed probably by jets. The nebulae are compared with SS433 nebula (W50).Comment: Proceedings of the ESO and Euro3D Workshop "Science Perspectives for 3D Spectroscopy", Garching (Germany), October 10-14, 2005. M. Kissler-Patig, M.M. Roth and J.R. Walsh (eds.

    Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters

    Full text link
    Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and Space Science; fixed typos and a quote in Sec.

    Stellar dynamics in young clusters: the formation of massive runaways and very massive runaway mergers

    Full text link
    In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics: 1. The formation and the evolution of very massive stars (with a mass >120 Mo) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collison of 10-20 most massive stars of the cluster (the process is known as runaway merging). The further evolution is governed by stellar wind mass loss during core hydrogen burning and during core helium burning (the WR phase of very massive stars). Our simulations reveal that as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed but with a maximum mass of 70 Mo. In small metallicity clusters however, it cannot be excluded that the runaway merging process is responsible for pair instability supernovae or for the formation of intermediate mass black holes with a mass of several 100 Mo. 2. Massive runaways can be formed via the supernova explosion of one of the components in a binary (the Blaauw scenario) or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g., zeta Pup, lambda Cep, BD+433654) are the product of the collision and merger of 2 or 3 massive stars.Comment: Updated and final versio

    Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    Get PDF
    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data.We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s−1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ∼ 1.5) nuclear X-ray source with a 2–10 keV luminosity of 4 × 1038 erg s−1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2–10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN

    Host Plant Records for Fruit Flies (Diptera: Tephritidae: Dacini) in the Pacific Islands: 2. Infestation Statistics on Economic Hosts

    Get PDF
    Detailed host records are listed for 39 species of Bactrocera and 2 species of Dacus fruit flies, infesting 98 species of commercial and edible fruits in the Pacific Island Countries and Territories, based on sampling and incubating in laboratory almost 13,000 field collected samples, or over 380,000 fruits. For each host-fly-country association, quantitative data are presented on the weight and number of fruits collected, the proportion of infested samples, the number of adult flies emerged per kg of fruits and, whenever available, the percentage of individual fruits infested. All the published records of each fly-host-country association are cited and erroneous or dubious published records are rectified or commented. Laboratory forced infestation data are also cited and reviewed
    corecore