86 research outputs found

    Rolling Tachyons from Liouville theory

    Full text link
    In this work we propose an exact solution of the c=1 Liouville model, i.e. of the world-sheet theory that describes the homogeneous decay of a closed string tachyon. Our expressions are obtained through careful extrapolation from the correlators of Liouville theory with c > 25. In the c=1 limit, we find two different theories which differ by the signature of Liouville field. The Euclidean limit coincides with the interacting c=1 theory that was constructed by Runkel and Watts as a limit of unitary minimal models. The couplings for the Lorentzian limit are new. In contrast to the behavior at c > 1, amplitudes in both c=1 models are non-analytic in the momenta and consequently they are not related by Wick rotation.Comment: 22 page

    New Results from Glueball Superpotentials and Matrix Models: the Leigh-Strassler Deformation

    Get PDF
    Using the result of a matrix model computation of the exact glueball superpotential, we investigate the relevant mass perturbations of the Leigh-Strassler marginal ``q'' deformation of N=4 supersymmetric gauge theory. We recall a conjecture for the elliptic superpotential that describes the theory compactified on a circle and identify this superpotential as one of the Hamiltonians of the elliptic Ruijsenaars-Schneider integrable system. In the limit that the Leigh-Strassler deformation is turned off, the integrable system reduces to the elliptic Calogero-Moser system which describes the N=1^* theory. Based on these results, we identify the Coulomb branch of the partially mass-deformed Leigh-Strassler theory as the spectral curve of the Ruijsenaars-Schneider system. We also show how the Leigh-Strassler deformation may be obtained by suitably modifying Witten's M theory brane construction of N=2 theories.Comment: 13 pages, JHEP, amstex, changed JHEP to JHEP

    Evolution of density perturbations in a realistic universe

    Full text link
    Prompted by the recent more precise determination of the basic cosmological parameters and growing evidence that the matter-energy content of the universe is now dominated by dark energy and dark matter we present the general solution of the equation that describes the evolution of density perturbations in the linear approximation. It turns out that as in the standard CDM model the density perturbations grow very slowly during the radiation dominated epoch and their amplitude increases by a factor of about 4000 in the matter and later dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure

    Renormalization group flows and continual Lie algebras

    Full text link
    We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z_n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.Comment: latex, 73pp including 14 eps fig

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    A new chronological framework for Middle and Upper Pleistocene landscape evolution in the Sussex/Hampshire Coastal Corridor, UK

    No full text
    The unique Middle and Late Pleistocene sedimentary record preserved along the Sussex/Hampshire Coastal Corridor between Romsey and Brighton contains a wealth of deposits including highstand marine sediments associated with a variety of different aged beaches, fluvial sediments associated with rivers crossing the coastal plain and cold stage deposits accumulating above the marine and fluvial sediments. Although quarrying activity has been extensive across much of the area it has been undertaken in flooded workings due to the high level of the watertable. Consequently little is known in detail about the sequences except where they outcrop on the foreshore around the coast. This paper examines recent work from the lower coastal plain using a multi-disciplinary approach these deposits to elucidate the age of the sequences and their associated environments of deposition. OSL dates from two of the beaches, the Aldingbourne and Brighton/Norton Beaches, place both within MIS 7. Although these OSL dates cannot differentiate between sub-stages within MIS 7, coupling these results with inferences from local geography, lithology and contained microfossils it is clear that the beaches belong to two different phases within MIS 7. These two beaches are clearly divided by a major phase of erosion and downcutting associated with a fall in sea-level. Fluvial sediments from Solent Terrace 2 and Arun Terrace 4 also date within MIS 7 and are tentatively ascribed to the downcutting event between the beaches. Together this information allows us to propose, for the first time, a robust independently dated framework for the lower parts of the coastal plain integrating for the first time the marine and terrestrial record
    corecore