330 research outputs found

    An integrated approach to modelling the fluid-structure interaction of a collapsible tube

    Get PDF
    The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality

    Classification of amyloidosis by model‐assisted mass spectrometry‐based proteomics

    Get PDF
    Funding Information: Funding: This research was partly funded by a “Center of Clinical Excellence” research grant from the Health Region of Southern Denmark to Odense Amyloidosis Center (AmyC). Publisher Copyright: © 2021 by the authors. Li-censee MDPI, Basel, Switzerland.Amyloidosis is a rare disease caused by the misfolding and extracellular aggregation of proteins as insoluble fibrillary deposits localized either in specific organs or systemically through-out the body. The organ targeted and the disease progression and outcome is highly dependent on the specific fibril‐forming protein, and its accurate identification is essential to the choice of treat-ment. Mass spectrometry‐based proteomics has become the method of choice for the identification of the amyloidogenic protein. Regrettably, this identification relies on manual and subjective inter-pretation of mass spectrometry data by an expert, which is undesirable and may bias diagnosis. To circumvent this, we developed a statistical model‐assisted method for the unbiased identification of amyloid‐containing biopsies and amyloidosis subtyping. Based on data from mass spectrometric analysis of amyloid‐containing biopsies and corresponding controls. A Boruta method applied on a random forest classifier was applied to proteomics data obtained from the mass spectrometric analysis of 75 laser dissected Congo Red positive amyloid‐containing biopsies and 78 Congo Red negative biopsies to identify novel “amyloid signature” proteins that included clusterin, fibulin‐1, vitronectin complement component C9 and also three collagen proteins, as well as the well‐known amyloid signature proteins apolipoprotein E, apolipoprotein A4, and serum amyloid P. A SVM learning algorithm were trained on the mass spectrometry data from the analysis of the 75 amyloid-containing biopsies and 78 amyloid‐negative control biopsies. The trained algorithm performed su-perior in the discrimination of amyloid‐containing biopsies from controls, with an accuracy of 1.0 when applied to a blinded mass spectrometry validation data set of 103 prospectively collected am-yloid‐containing biopsies. Moreover, our method successfully classified amyloidosis patients ac-cording to the subtype in 102 out of 103 blinded cases. Collectively, our model‐assisted approach identified novel amyloid‐associated proteins and demonstrated the use of mass spectrometry‐based data in clinical diagnostics of disease by the unbiased and reliable model‐assisted classification of amyloid deposits and of the specific amyloid subtype.publishersversionpublishe

    Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Using ideas from dynamical systems and functional analysis, we show that the free energy ff in the vicinity of the second-order phase transition is given, exactly, by f∼tlog⁡t−12h2tforh2≪t≪1. f \sim \frac t{\log t}-\frac1{2} \frac{h^2}t \quad \text{for} \quad h^2\ll t \ll 1 . Here t=λGlog⁡(2)(1−ββc)t=\lambda_{G}\log(2)(1-\frac{\beta}{\beta_c}) is a reduced temperature, so that the deviation from the critical point is scaled by the Lyapunov exponent of the Gauss map, λG\lambda_G. It follows that λG\lambda_G determines the amplitude of both the specific heat and susceptibility singularities. To our knowledge, there is only one other microscopically defined interacting model for which the free energy near a phase transition is known as a function of two variables. Our results confirm what was found previously with a cluster approximation, and show that a clustering mechanism is in fact responsible for the transition. However, the results disagree in part with a renormalisation group treatment

    Langevin Simulations of Two Dimensional Vortex Fluctuations: Anomalous Dynamics and a New IVIV-exponent

    Full text link
    The dynamics of two dimensional (2D) vortex fluctuations are investigated through simulations of the 2D Coulomb gas model in which vortices are represented by soft disks with logarithmic interactions. The simulations trongly support a recent suggestion that 2D vortex fluctuations obey an intrinsic anomalous dynamics manifested in a long range 1/t-tail in the vortex correlations. A new non-linear IV-exponent a, which is different from the commonly used AHNS exponent, a_AHNS and is given by a = 2a_AHNS - 3, is confirmed by the simulations. The results are discussed in the context of earlier simulations, experiments and a phenomenological description.Comment: Submitted to PRB, RevTeX format, 28 pages and 13 figures, figures in postscript format are available at http://www.tp.umu.se/~holmlund/papers.htm

    A closer look at the uncertainty relation of position and momentum

    Full text link
    We consider particles prepared by the von Neumann-L\"uders projection. For those particles the standard deviation of the momentum is discussed. We show that infinite standard deviations are not exceptions but rather typical. A necessary and sufficient condition for finite standard deviations is given. Finally, a new uncertainty relation is derived and it is shown that the latter cannot be improved.Comment: 3 pages, introduction shortened, content unchange

    Intelligence and neuroticism in relation to depression and psychological distress: Evidence from two large population cohorts

    Get PDF
    BACKGROUND: Neuroticism is a risk factor for selected mental and physical illnesses and is inversely associated with intelligence. Intelligence appears to interact with neuroticism and mitigate its detrimental effects on physical health and mortality. However, the inter-relationships of neuroticism and intelligence for major depressive disorder (MDD) and psychological distress has not been well examined. METHODS: Associations and interactions between neuroticism and general intelligence (g) on MDD, self-reported depression, and psychological distress were examined in two population-based cohorts: Generation Scotland: Scottish Family Health Study (GS:SFHS, n=19,200) and UK Biobank (n=90,529). The Eysenck Personality Scale Short Form-Revised measured neuroticism and g was extracted from multiple cognitive ability tests in each cohort. Family structure was adjusted for in GS:SFHS. RESULTS: Neuroticism was strongly associated with increased risk for depression and higher psychological distress in both samples. Although intelligence conferred no consistent independent effects on depression, it did increase the risk for depression across samples once neuroticism was adjusted for. Results suggest that higher intelligence may ameliorate the association between neuroticism and self-reported depression although no significant interaction was found for clinical MDD. Intelligence was inversely associated with psychological distress across cohorts. A small interaction was found across samples such that lower psychological distress associates with higher intelligence and lower neuroticism, although effect sizes were small. CONCLUSIONS: From two large cohort studies, our findings suggest intelligence acts a protective factor in mitigating the effects of neuroticism on psychological distress. Intelligence does not confer protection against diagnosis of depression in those high in neuroticism

    The Dutch institute for clinical auditing achieving Codman's dream on a nationwide basis

    Get PDF
    Supplemental Digital Content is available in the textSurgical oncolog

    Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60

    Full text link
    Muon spin rotation measurements of the magnetic field distribution in the vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60} reveal a vortex-lattice melting transition at much lower temperature than that in the fully oxygenated material. The transition is best described by a model in which adjacent layers of ``pancake'' vortices decouple in the liquid phase. Evidence is also found for a pinning-induced crossover from a solid 3D to quasi-2D vortex lattice, similar to that observed in the highly anisotropic superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome

    Get PDF
    Purpose: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. Methods: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. Results: Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. Conclusion: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease
    • …
    corecore