570 research outputs found

    A novel determination of the local dark matter density

    Full text link
    We present a novel study on the problem of constructing mass models for the Milky Way, concentrating on features regarding the dark matter halo component. We have considered a variegated sample of dynamical observables for the Galaxy, including several results which have appeared recently, and studied a 7- or 8-dimensional parameter space - defining the Galaxy model - by implementing a Bayesian approach to the parameter estimation based on a Markov Chain Monte Carlo method. The main result of this analysis is a novel determination of the local dark matter halo density which, assuming spherical symmetry and either an Einasto or an NFW density profile is found to be around 0.39 GeV cm−3^{-3} with a 1-σ\sigma error bar of about 7%; more precisely we find a ρDM(R0)=0.385±0.027GeVcm−3\rho_{DM}(R_0) = 0.385 \pm 0.027 \rm GeV cm^{-3} for the Einasto profile and ρDM(R0)=0.389±0.025GeVcm−3\rho_{DM}(R_0) = 0.389 \pm 0.025 \rm GeV cm^{-3} for the NFW. This is in contrast to the standard assumption that ρDM(R0)\rho_{DM}(R_0) is about 0.3 GeV cm−3^{-3} with an uncertainty of a factor of 2 to 3. A very precise determination of the local halo density is very important for interpreting direct dark matter detection experiments. Indeed the results we produced, together with the recent accurate determination of the local circular velocity, should be very useful to considerably narrow astrophysical uncertainties on direct dark matter detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde

    Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function

    Get PDF
    Recent numerical evidence suggests that a mass spectrum of primordial black holes (PBHs) is produced as a consequence of near critical gravitational collapse. Assuming that these holes formed from the initial density perturbations seeded by inflation, we calculate model independent upper bounds on the mass variance at the reheating temperature by requiring the mass density not exceed the critical density and the photon emission not exceed current diffuse gamma-ray measurements. We then translate these results into bounds on the spectral index n by utilizing the COBE data to normalize the mass variance at large scales, assuming a constant power law, then scaling this result to the reheating temperature. We find that our bounds on n differ substantially (\delta n > 0.05) from those calculated using initial mass functions derived under the assumption that the black hole mass is proportional to the horizon mass at the collapse epoch. We also find a change in the shape of the diffuse gamma-ray spectrum which results from the Hawking radiation. Finally, we study the impact of a nonzero cosmological constant and find that the bounds on n are strengthened considerably if the universe is indeed vacuum-energy dominated today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added, version to be published in PR

    Predicted Impact of COVID-19 on Neglected Tropical Disease Programs and the Opportunity for Innovation

    Get PDF
    Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.</p

    Treatment Guidance for Patients With Lung Cancer During the Coronavirus 2019 Pandemic

    Get PDF
    The global coronavirus disease 2019 pandemic continues to escalate at a rapid pace inundating medical facilities and creating substantial challenges globally. The risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with cancer seems to be higher, especially as they are more likely to present with an immunocompromised condition, either from cancer itself or from the treatments they receive. A major consideration in the delivery of cancer care during the pandemic is to balance the risk of patient exposure and infection with the need to provide effective cancer treatment. Many aspects of the SARS-CoV-2 infection currently remain poorly characterized and even less is known about the course of infection in the context of a patient with cancer. As SARS-CoV-2 is highly contagious, the risk of infection directly affects the cancer patient being treated, other cancer patients in close proximity, and health care providers. Infection at any level for patients or providers can cause considerable disruption to even the most effective treatment plans. Lung cancer patients, especially those with reduced lung function and cardiopulmonary comorbidities are more likely to have increased risk and mortality from coronavirus disease 2019 as one of its common manifestations is as an acute respiratory illness. The purpose of this manuscript is to present a practical multidisciplinary and international overview to assist in treatment for lung cancer patients during this pandemic, with the caveat that evidence is lacking in many areas. It is expected that firmer recommendations can be developed as more evidence becomes available

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
    • 

    corecore